1
|
Pannoni KE, Fischer QS, Tarannum R, Cawley ML, Alsalman MM, Acosta N, Ezigbo C, Gil DV, Campbell LA, Farris S. MCU expression in hippocampal CA2 neurons modulates dendritic mitochondrial morphology and synaptic plasticity. Sci Rep 2025; 15:4540. [PMID: 39915602 PMCID: PMC11802895 DOI: 10.1038/s41598-025-85958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Neuronal mitochondria are diverse across cell types and subcellular compartments in order to meet unique energy demands. While mitochondria are essential for synaptic transmission and synaptic plasticity, the mechanisms regulating mitochondria to support normal synapse function are incompletely understood. The mitochondrial calcium uniporter (MCU) is proposed to couple neuronal activity to mitochondrial ATP production, which would allow neurons to rapidly adapt to changing energy demands. MCU is uniquely enriched in hippocampal CA2 distal dendrites compared to proximal dendrites, however, the functional significance of this layer-specific enrichment is not clear. Synapses onto CA2 distal dendrites readily express plasticity, unlike the plasticity-resistant synapses onto CA2 proximal dendrites, but the mechanisms underlying these different plasticity profiles are unknown. Using a CA2-specific MCU knockout (cKO) mouse, we found that MCU deletion impairs plasticity at distal dendrite synapses. However, mitochondria were more fragmented and spine head area was diminished throughout the dendritic layers of MCU cKO mice versus control mice. Fragmented mitochondria might have functional changes, such as altered ATP production, that could explain the structural and functional deficits at cKO synapses. Differences in MCU expression across cell types and circuits might be a general mechanism to tune mitochondrial function to meet distinct synaptic demands.
Collapse
Affiliation(s)
- Katy E Pannoni
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Quentin S Fischer
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Renesa Tarannum
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Mikel L Cawley
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Mayd M Alsalman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Nicole Acosta
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Chisom Ezigbo
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Daniela V Gil
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Logan A Campbell
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Shannon Farris
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
2
|
Pannoni KE, Fischer QS, Tarannum R, Cawley ML, Alsalman MM, Acosta N, Ezigbo C, Gil DV, Campbell LA, Farris S. MCU-enriched dendritic mitochondria regulate plasticity in distinct hippocampal circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566606. [PMID: 37986798 PMCID: PMC10659405 DOI: 10.1101/2023.11.10.566606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mitochondria are dynamic organelles that are morphologically and functionally diverse across cell types and subcellular compartments in order to meet unique energy demands. Mitochondrial dysfunction has been implicated in a wide variety of neurological disorders, including psychiatric disorders like schizophrenia and bipolar disorder. Despite it being well known that mitochondria are essential for synaptic transmission and synaptic plasticity, the mechanisms regulating mitochondria in support of normal synapse function are incompletely understood. The mitochondrial calcium uniporter (MCU) regulates calcium entry into the mitochondria, which in turn regulates the bioenergetics and distribution of mitochondria to active synapses. Evidence suggests that calcium influx via MCU couples neuronal activity to mitochondrial metabolism and ATP production, which would allow neurons to rapidly adapt to changing energy demands. Intriguingly, MCU is uniquely enriched in hippocampal CA2 distal dendrites relative to neighboring hippocampal CA1 or CA3 distal dendrites, however, the functional significance of this enrichment is not clear. Synapses from the entorhinal cortex layer II (ECII) onto CA2 distal dendrites readily express long term potentiation (LTP), unlike the LTP-resistant synapses from CA3 onto CA2 proximal dendrites, but the mechanisms underlying these different plasticity profiles are unknown. We hypothesized that enrichment of MCU near ECII-CA2 synapses promotes LTP in an otherwise plasticity-restricted cell type. Using a CA2-specific MCU knockout (cKO) mouse, we found that MCU is required for LTP at distal dendrite synapses but does not affect the lack of LTP at proximal dendrite synapses. Loss of LTP at ECII-CA2 synapses correlated with a trend for decreased spine density in CA2 distal dendrites of cKO mice compared to control (CTL) mice, which was predominantly seen in immature spines. Moreover, mitochondria were significantly smaller and more numerous across all dendritic layers of CA2 in cKO mice compared to CTL mice, suggesting an overall increase in mitochondrial fragmentation. Fragmented mitochondria might have functional changes, such as altered ATP production, that might explain a deficit in synaptic plasticity. Collectively, our data reveal that MCU regulates layer-specific forms of plasticity in CA2 dendrites, potentially by maintaining proper mitochondria morphology and distribution within dendrites. Differences in MCU expression across different cell types and circuits might be a general mechanism to tune the sensitivity of mitochondria to cytoplasmic calcium levels to power synaptic plasticity.
Collapse
Affiliation(s)
- Katy E. Pannoni
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Quentin S. Fischer
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Renesa Tarannum
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia
| | - Mikel L. Cawley
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia
| | - Mayd M. Alsalman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Nicole Acosta
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Chisom Ezigbo
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Daniela V. Gil
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Logan A. Campbell
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Shannon Farris
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
3
|
Duan W, Liu C, Zhou J, Yu Q, Duan Y, Zhang T, Li Y, Fu G, Sun Y, Tian J, Xia Z, Yang Y, Liu Y, Xu S. Upregulation of mitochondrial calcium uniporter contributes to paraquat-induced neuropathology linked to Parkinson's disease via imbalanced OPA1 processing. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131369. [PMID: 37086674 DOI: 10.1016/j.jhazmat.2023.131369] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Paraquat (PQ) is the most widely used herbicide in agriculture worldwide and has been considered a high-risk environmental factor for Parkinson's disease (PD). Chronic PQ exposure selectively induces dopaminergic neuron loss, the hallmark pathologic feature of PD, resulting in Parkinson-like movement disorders. However, the underlying mechanisms remain unclear. Here, we demonstrated that repetitive PQ exposure caused dopaminergic neuron loss, dopamine deficiency and motor deficits dose-dependently in mice. Accordingly, mitochondrial calcium uniporter (MCU) was highly expressed in PQ-exposed mice and neuronal cells. Importantly, MCU knockout (KO) effectively rescued PQ-induced dopaminergic neuron loss and motor deficits in mice. Genetic and pharmacological inhibition of MCU alleviated PQ-induced mitochondrial dysfunction and neuronal death in vitro. Mechanistically, PQ exposure triggered mitochondrial fragmentation via imbalance of the optic atrophy 1 (OPA1) processing manifested by cleavage of L-OPA1 to S-OPA1, which was reversed by inhibition of MCU. Notably, the upregulation of MCU was mediated by miR-129-1-3p posttranscriptionally, and overexpression of miR-129-1-3p could rebalance OPA1 processing and attenuate mitochondrial dysfunction and neuronal death induced by PQ exposure. Consequently, our work uncovers an essential role of MCU and a novel molecular mechanism, miR-MCU-OPA1, in PQ-induced pathogenesis of PD, providing a potential target and strategy for environmental neurotoxins-induced PD treatment.
Collapse
Affiliation(s)
- Weixia Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Cong Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Jie Zhou
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qin Yu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yu Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Tian Zhang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yuanyuan Li
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Guanyan Fu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yapei Sun
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiacheng Tian
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhiqin Xia
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingli Yang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yongseng Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China.
| |
Collapse
|
4
|
Gama Justi FV, Araújo Matos G, de Sá Roriz Caminha J, Rodrigues Roque C, Muniz Carvalho E, Soares Campelo MW, Belayev L, Gonzaga de França Lopes L, Barreto Oriá R. The Role of Ruthenium Compounds in Neurologic Diseases: A Minireview. J Pharmacol Exp Ther 2022; 380:47-53. [PMID: 34728560 DOI: 10.1124/jpet.121.000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Ruthenium compounds, nitric oxide donors in biologic systems, have emerged as a promising therapeutic alternative to conventional drugs in anticancer chemotherapy and as a potential neuroprotective agent with fewer cytotoxic effects. This minireview summarizes promising studies with ruthenium complexes and their roles in cancer, neuroinflammation, neurovascular, and neurodegenerative diseases. The up-to-date evidence supports that ruthenium-based compounds have beneficial effects against gliomas and other types of brain cancers, reduce motor symptoms in models of cerebral ischemia-reperfusion, and may act in the control of nociceptive and inflammatory events, such as those seen in early Alzheimer's disease. More studies are needed to fill many current knowledge gaps about the intricate and complex biologic effects and therapeutic-related mechanisms of ruthenium, stimulating further research. SIGNIFICANCE STATEMENT: This minireview summarizes studies addressing the role of ruthenium compounds on neurological illnesses, focusing on brain cancer and neurovascular and neurodegenerative diseases. No such review is available in the literature.
Collapse
Affiliation(s)
- Fátima Virgínia Gama Justi
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Gabriella Araújo Matos
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Juan de Sá Roriz Caminha
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Cássia Rodrigues Roque
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Edinilton Muniz Carvalho
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Márcio Wilker Soares Campelo
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Ludmila Belayev
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Luiz Gonzaga de França Lopes
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Reinaldo Barreto Oriá
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| |
Collapse
|
5
|
Gong Y, Lin J, Ma Z, Yu M, Wang M, Lai D, Fu G. Mitochondria-associated membrane-modulated Ca 2+ transfer: A potential treatment target in cardiac ischemia reperfusion injury and heart failure. Life Sci 2021; 278:119511. [PMID: 33864818 DOI: 10.1016/j.lfs.2021.119511] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Effective Ca2+ dependent mitochondrial energy supply is imperative for proper cardiac contractile activity, while disruption of Ca2+ homeostasis participates in the pathogenesis of multiple human diseases. This phenomenon is particularly prominent in cardiac ischemia and reperfusion (I/R) and heart failure, both of which require strict clinical intervention. The interface between endoplasmic reticula (ER) and mitochondria, designated the mitochondria-associated membrane (MAM), is now regarded as a crucial mediator of Ca2+ transportation. Thus, interventions targeting this physical and functional coupling between mitochondria and the ER are highly desirable. Increasing evidence supports the notion that restoration, and maintenance, of the physiological contact between these two organelles can improve mitochondrial function, while inhibiting cell death, thereby sufficiently ameliorating I/R injury and heart failure development. A better understanding regarding the underlying mechanism of MAM-mediated transport will pave the way for identification of novel treatment approaches for heart disease. Therefore, in this review, we summarize the crucial functions and potential mechanisms of MAMs in the pathogenesis of I/R and heart failure.
Collapse
Affiliation(s)
- Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Jun Lin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Zetao Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Mei Yu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China.
| | - Dongwu Lai
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China.
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China.
| |
Collapse
|
6
|
Yu M, Yang J, Gao X, Sun W, Liu S, Han Y, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride impairs spatial learning and memory by inducing [Ca2+]m overload, mitochondrial fission–fusion disorder and excessive mitophagy in hippocampal nerve cells of rats. Metallomics 2020; 12:592-606. [DOI: 10.1039/c9mt00291j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lanthanum chloride damages hippocampal nerve cells of rats through inducing [Ca2+]m overload, mitochondrial fission–fusion disorder, and excessive mitophagy.
Collapse
|
7
|
Xie KF, Guo DD, Luo XJ. SMDT1-driven change in mitochondrial dynamics mediate cell apoptosis in PDAC. Biochem Biophys Res Commun 2019; 511:323-329. [DOI: 10.1016/j.bbrc.2019.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022]
|
8
|
Zhang L, Wang H, Zhou X, Mao L, Ding K, Hu Z. Role of mitochondrial calcium uniporter-mediated Ca 2+ and iron accumulation in traumatic brain injury. J Cell Mol Med 2019; 23:2995-3009. [PMID: 30756474 PMCID: PMC6433723 DOI: 10.1111/jcmm.14206] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies have suggested that the cellular Ca2+ and iron homeostasis, which can be regulated by mitochondrial calcium uniporter (MCU), is associated with oxidative stress, apoptosis and many neurological diseases. However, little is known about the role of MCU‐mediated Ca2+ and iron accumulation in traumatic brain injury (TBI). Under physiological conditions, MCU can be inhibited by ruthenium red (RR) and activated by spermine (Sper). In the present study, we used RR and Sper to reveal the role of MCU in mouse and neuron TBI models. Our results suggested that the Ca2+ and iron concentrations were obviously increased after TBI. In addition, TBI models showed a significant generation of reactive oxygen species (ROS), decrease in adenosine triphosphate (ATP), deformation of mitochondria, up‐regulation of deoxyribonucleic acid (DNA) damage and increase in apoptosis. Blockage of MCU by RR prevented Ca2+ and iron accumulation, abated the level of oxidative stress, improved the energy supply, stabilized mitochondria, reduced DNA damage and decreased apoptosis both in vivo and in vitro. Interestingly, Sper did not increase cellular Ca2+ and iron concentrations, but suppressed the Ca2+ and iron accumulation to benefit the mice in vivo. However, Sper had no significant impact on TBI in vitro. Taken together, our data demonstrated for the first time that blockage of MCU‐mediated Ca2+ and iron accumulation was essential for TBI. These findings indicated that MCU could be a novel therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ke Ding
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
9
|
Paupe V, Prudent J. New insights into the role of mitochondrial calcium homeostasis in cell migration. Biochem Biophys Res Commun 2018; 500:75-86. [PMID: 28495532 PMCID: PMC5930976 DOI: 10.1016/j.bbrc.2017.05.039] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 01/23/2023]
Abstract
Mitochondria are dynamic organelles involved in numerous physiological functions. Beyond their function in ATP production, mitochondria regulate cell death, reactive oxygen species (ROS) generation, immunity and metabolism. Mitochondria also play a key role in the buffering of cytosolic calcium, and calcium transported into the matrix regulates mitochondrial metabolism. Recently, the identification of the mitochondrial calcium uniporter (MCU) and associated regulators has allowed the characterization of new physiological roles for calcium in both mitochondrial and cellular homeostasis. Indeed, recent work has highlighted the importance of mitochondrial calcium homeostasis in regulating cell migration. Cell migration is a property common to all metazoans and is critical to embryogenesis, cancer progression, wound-healing and immune surveillance. Previous work has established that cytoplasmic calcium is a key regulator of cell migration, as oscillations in cytosolic calcium activate cytoskeletal remodelling, actin contraction and focal adhesion (FA) turnover necessary for cell movement. Recent work using animal models and in cellulo experiments to genetically modulate MCU and partners have shed new light on the role of mitochondrial calcium dynamics in cytoskeletal remodelling through the modulation of ATP and ROS production, as well as intracellular calcium signalling. This review focuses on MCU and its regulators in cell migration during physiological and pathophysiological processes including development and cancer. We also present hypotheses to explain the molecular mechanisms by which MCU may regulate mitochondrial dynamics and motility to drive cell migration.
Collapse
Affiliation(s)
- Vincent Paupe
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
10
|
White C. The Regulation of Tumor Cell Invasion and Metastasis by Endoplasmic Reticulum-to-Mitochondrial Ca 2+ Transfer. Front Oncol 2017; 7:171. [PMID: 28848710 PMCID: PMC5554129 DOI: 10.3389/fonc.2017.00171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/26/2017] [Indexed: 12/23/2022] Open
Abstract
Cell migration is one of the many processes orchestrated by calcium (Ca2+) signaling, and its dysregulation drives the increased invasive and metastatic potential of cancer cells. The ability of Ca2+ to function effectively as a regulator of migration requires the generation of temporally complex signals within spatially restricted microdomains. The generation and maintenance of these Ca2+ signals require a specific structural architecture and tightly regulated communication between the extracellular space, intracellular organelles, and cytoplasmic compartments. New insights into how Ca2+ microdomains are shaped by interorganellar Ca2+ communication have shed light on how Ca2+ coordinates cell migration by directing cellular polarization and the rearrangement of structural proteins. Importantly, we are beginning to understand how cancer subverts normal migration through the activity of oncogenes and tumor suppressors that impinge directly on the physiological function or expression levels of Ca2+ signaling proteins. In this review, we present and discuss research at the forefront of interorganellar Ca2+ signaling as it relates to cell migration, metastasis, and cancer progression, with special focus on endoplasmic reticulum-to-mitochondrial Ca2+ transfer.
Collapse
Affiliation(s)
- Carl White
- Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
11
|
Zheng X, Chen M, Meng X, Chu X, Cai C, Zou F. Phosphorylation of dynamin-related protein 1 at Ser616 regulates mitochondrial fission and is involved in mitochondrial calcium uniporter-mediated neutrophil polarization and chemotaxis. Mol Immunol 2017; 87:23-32. [DOI: 10.1016/j.molimm.2017.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 11/28/2022]
|
12
|
Mdivi-1 Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats, Possibly via Inhibition of Drp1-Activated Mitochondrial Fission and Oxidative Stress. Neurochem Res 2017; 42:1449-1458. [DOI: 10.1007/s11064-017-2201-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 01/06/2023]
|
13
|
Bhosale G, Sharpe JA, Koh A, Kouli A, Szabadkai G, Duchen MR. Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1009-1017. [PMID: 28132899 PMCID: PMC5424885 DOI: 10.1016/j.bbamcr.2017.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 01/07/2023]
Abstract
Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2 + uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochondrial Ca2+ concentration ([Ca2 +]m). We now explore the functional consequences of MICU1 mutations in patient derived fibroblasts in order to clarify the underlying pathophysiology of this disorder. We propose that deregulation of mitochondrial Ca2+ uptake through loss of MICU1 raises resting [Ca2+]m, initiating a futile Ca2+ cycle, whereby continuous mitochondrial Ca2+ influx is balanced by Ca2+ efflux through the sodium calcium exchanger (NLCXm). Thus, inhibition of NCLXm by CGP-37157 caused rapid mitochondrial Ca2+ accumulation in patient but not control cells. We suggest that increased NCLX activity will increase sodium/proton exchange, potentially undermining oxidative phosphorylation, although this is balanced by dephosphorylation and activation of pyruvate dehydrogenase (PDH) in response to the increased [Ca2+]m. Consistent with this model, while ATP content in patient derived or control fibroblasts was not different, ATP increased significantly in response to CGP-37157 in the patient but not the control cells. In addition, EMRE expression levels were altered in MICU1 patient cells compared to the controls. The MICU1 mutations were associated with mitochondrial fragmentation which we show is related to altered DRP1 phosphorylation. Thus, MICU1 serves as a signal–noise discriminator in mitochondrial calcium signalling, limiting the energetic costs of mitochondrial Ca2+ signalling which may undermine oxidative phosphorylation, especially in tissues with highly dynamic energetic demands. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Loss of MICU1 protein expression in human fibroblasts increases resting mitochondrial calcium concentration ([Ca2+]m). The increased mitochondrial Ca2+ uptake causes a futile Ca2+ cycle in MICU1 deficient cells. Increased [Ca2+]mactivates pyruvate dehydrogenase (PDH) by activating PDH phosphatase, consequently dephosphorylating PDH. Loss of MICU1 leads to modifications of the MCU complex composition and mitochondrial fragmentation.
Collapse
Affiliation(s)
- Gauri Bhosale
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jenny A Sharpe
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Amanda Koh
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Antonina Kouli
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
14
|
Wang H, Zheng S, Liu M, Jia C, Wang S, Wang X, Xue S, Guo Y. The Effect of Propofol on Mitochondrial Fission during Oxygen-Glucose Deprivation and Reperfusion Injury in Rat Hippocampal Neurons. PLoS One 2016; 11:e0165052. [PMID: 27788177 PMCID: PMC5082830 DOI: 10.1371/journal.pone.0165052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
The neuroprotective role of propofol in transient global and focal cerebral ischemia reperfusion (I/R) animal model has recently been highlighted. However, no studies have conducted to explore the relationship between mitochondrial fission/fusion and I/R injury under the intervention of propofol. Moreover, neuroprotective mechanism of propofol is yet unclear. Culturing primary hippocampal cells were subjected to oxygen-glucose deprivation and re-oxygenation (OGD/R) model, as a model of cerebral I/R in vitro. Methods CCK-8 assay was used to test the effect of propofol on cell viability. We examined the effect of propofol on mitochondrial ultrastructure and mitochondrial fission evoked by OGD/R with transmission electron microscopy and immunofluorescence assay. To investigate possible neuroprotective mechanisms, the authors then examined whether propofol could inhibit calcium-overload, calcineurin (CaN) activation and the phosphorylation of dynamin-related protein 1 (Drp1) during the period of OGD/R, as well as the combination of Drp1-ser 637 and fission 1 (Fis1) protein by immunofluorescence assay, ELISA and double-labeling immunofluorescence analysis. Finally, the expression of Drp1-ser 637 and Fis1, apoptosis inducing factor (AIF) and cytochrome C (Cyt C) were detected by western blot. When added in culture media during OGD period, propofol (0.1μM-50μM) could alleviate neurons injury and protect mitochondrial ultrastructure, meanwhile inhibit mitochondrial fission. Furthermore, the concentration of intracellular free Ca2+, CaN activition and the phosphorylation of Drp1-ser637 were suppressed, as well as the translocation and combination of Drp1-ser 637 and Fis1. The authors also found that the expression of Cyt C, AIF, Drp1-ser637 and Fis1 were down-regulated. Notably, high dose of propofol (100μM-200μM) were confirmed to decrease the survival of neurons based on results of cell viability. Propofol could inhibit mitochondrial fission and mitochondrial apoptotic pathway evoked by OGD/R in rat hippocampal neurons, which may be via depressing calcium-overload.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Shengfa Zheng
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Maodong Liu
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Changxin Jia
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Shilei Wang
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
- * E-mail:
| | - Xue Wang
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Sha Xue
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Yunliang Guo
- Department of Anesthesiology, People's Hospital of Rizhao, Rizhao, Shandong Province, China
| |
Collapse
|
15
|
Effect of ruthenium red, a ryanodine receptor antagonist in experimental diabetes induced vascular endothelial dysfunction and associated dementia in rats. Physiol Behav 2016; 164:140-50. [PMID: 27262216 DOI: 10.1016/j.physbeh.2016.05.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is considered as a main risk factor for vascular dementia. In the past, we have reported the induction of vascular dementia by experimental diabetes. This study investigates the efficacy of a ruthenium red, a ryanodine receptor antagonist and pioglitazone in the pharmacological interdiction of pancreatectomy diabetes (PaD) induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. PaD rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with an increase in brain inflammation, oxidative stress and calcium. Administration of ruthenium red and pioglitazone has significantly attenuated PaD induced impairment of learning, memory, blood brain barrier permeability, endothelial function and biochemical parameters. It may be concluded that ruthenium red, a ryanodine receptor antagonist and pioglitazone, a PPAR-γ agonist may be considered as potent pharmacological agent for the management of PaD induced endothelial dysfunction and subsequent vascular dementia. Ryanodine receptor may be explored further for their possible benefits in vascular dementia.
Collapse
|
16
|
Randhawa PK, Jaggi AS. Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:887-96. [PMID: 27118661 DOI: 10.1007/s00210-016-1251-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/20/2016] [Indexed: 01/16/2023]
Abstract
Remote ischemic preconditioning is a well reported therapeutic strategy that induces cardioprotective effects but the underlying intracellular mechanisms have not been widely explored. The current study was designed to investigate the involvement of TRP and especially TRPV channels in remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 alternate cycles of inflation and deflation of 5 min each) was delivered using a blood pressure cuff tied on the hind limb of the anesthetized rat. Using Langendorff's system, the heart was perfused and subjected to 30-min ischemia and 120-min reperfusion. The myocardial injury was assessed by measuring infarct size, lactate dehydrogenase (LDH), creatine kinase (CK), LVDP, +dp/dtmax, -dp/dtmin, heart rate, and coronary flow rate. Gadolinium, TRP blocker, and ruthenium red, TRPV channel blocker, were employed as pharmacological tools. Remote hind limb preconditioning significantly reduced the infarct size, LDH release, CK release and improved coronary flow rate, hemodynamic parameters including LVDP, +dp/dtmax, -dp/dtmin, and heart rate. However, gadolinium (7.5 and 15 mg kg(-1)) and ruthenium red (4 and 8 mg kg(-1)) significantly attenuated the cardioprotective effects suggesting the involvement of TRP especially TRPV channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus possibly activates TRPV channels on the heart or sensory nerve fibers innervating the heart to induce cardioprotective effects. Alternatively, remote hind limb preconditioning stimulus may also activate the mechanosensitive TRP and especially TRPV channels on the sensory nerve fibers innervating the skeletal muscles to trigger cardioprotective neurogenic signaling cascade. The cardioprotective effects of remote hind limb preconditioning may be mediated via activation of mechanosensitive TRP and especially TRPV channels.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
17
|
Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2015; 16:24895-917. [PMID: 26492239 PMCID: PMC4632781 DOI: 10.3390/ijms161024895] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia-reperfusion injury involves multiple independently fatal terminal pathways in the mitochondria. These pathways include the reactive oxygen species (ROS) generation caused by changes in mitochondrial membrane potential and calcium overload, resulting in apoptosis via cytochrome c (Cyt c) release. In addition, numerous microRNAs are associated with the overall process. In this review, we first briefly summarize the mitochondrial changes in cerebral ischemia-reperfusion and then describe the possible molecular mechanism of miRNA-regulated mitochondrial function, which likely includes oxidative stress and energy metabolism, as well as apoptosis. On the basis of the preceding analysis, we conclude that studies of microRNAs that regulate mitochondrial function will expedite the development of treatments for cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yue Hu
- Graduate School, Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Hao Deng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| |
Collapse
|
18
|
Zhao L, Li S, Wang S, Yu N, Liu J. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury. Biochem Biophys Res Commun 2015; 461:537-42. [DOI: 10.1016/j.bbrc.2015.04.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/12/2015] [Indexed: 12/23/2022]
|
19
|
Yan H, Zhang D, Hao S, Li K, Hang CH. Role of Mitochondrial Calcium Uniporter in Early Brain Injury After Experimental Subarachnoid Hemorrhage. Mol Neurobiol 2014; 52:1637-1647. [DOI: 10.1007/s12035-014-8942-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/16/2014] [Indexed: 11/24/2022]
|