1
|
Li Y, Chang Y, Yan Y, Ma X, Zhou W, Zhang H, Guo J, Wei J, Jin T. Very important pharmacogenetic variants landscape and potential clinical relevance in the Zhuang population from Yunnan province. Sci Rep 2024; 14:7495. [PMID: 38553524 PMCID: PMC10980727 DOI: 10.1038/s41598-024-58092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
The gradual evolution of pharmacogenomics has shed light on the genetic basis for inter-individual drug response variations across diverse populations. This study aimed to identify pharmacogenomic variants that differ in Zhuang population compared with other populations and investigate their potential clinical relevance in gene-drug and genotypic-phenotypic associations. A total of 48 variants from 24 genes were genotyped in 200 Zhuang subjects using the Agena MassARRAY platform. The allele frequencies and genotype distribution data of 26 populations were obtained from the 1000 Genomes Project, followed by a comparison and statistical analysis. After Bonferroni correction, significant differences in genotype frequencies were observed of CYP3A5 (rs776746), ACE (rs4291), KCNH2 (rs1805123), and CYP2D6 (rs1065852) between the Zhuang population and the other 26 populations. It was also found that the Chinese Dai in Xishuangbanna, China, Han Chinese in Beijing, China, and Southern Han Chinese, China showed least deviation from the Zhuang population. The Esan in Nigeria, Gambian in Western Division, The Gambia, and Yoruba in Ibadan, Nigeria exhibited the largest differences. This was also proved by structural analysis, Fst analysis and phylogenetic tree. Furthermore, these differential variants may be associated with the pharmacological efficacy and toxicity of Captopril, Amlodipine, Lisinopril, metoclopramide, and alpha-hydroxymetoprolol in the Zhuang population. Our study has filled the gap of pharmacogenomic information in the Zhuang population and has provided a theoretical framework for the secure administration of drugs in the Zhuang population.
Collapse
Affiliation(s)
- Yujie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yanting Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiaoya Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wenqian Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Huan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jinping Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jie Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China.
- College of Life Science, Northwest University, Xi'an, 710127, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
2
|
Yang MH, Ho TC, Chang CC, Su YS, Yuan CH, Chuang KP, Tyan YC. Utilizing Proteomic Approaches to Uncover the Neuroprotective Effects of ACE Inhibitors: Implications for Alzheimer's Disease Treatment. Molecules 2023; 28:5938. [PMID: 37630190 PMCID: PMC10459293 DOI: 10.3390/molecules28165938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Two types of angiotensin-converting enzyme (ACE) inhibitors, lisinopril and benazepril HCl, were tested in neuroblastoma cells and found to upregulate low-density lipoprotein-receptor-related protein 1B (LRP1B) and 14-3-3 protein zeta/delta. Additionally, benazepril HCl was found to increase the expression of calreticulin. The upregulation of these proteins by ACE inhibitors may contribute to the amelioration of cognitive deficits in Alzheimer's disease/dementia, as well as the clinically observed deceleration of functional decline in Alzheimer's patients. This discovery suggests that the supplementation of ACE inhibitors may promote neuronal cell survival independently of their antihypertensive effect. Overall, these findings indicate that ACE inhibitors may be a promising avenue for developing effective treatments for Alzheimer's disease.
Collapse
Affiliation(s)
- Ming-Hui Yang
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzu-Chuan Ho
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chin-Chuan Chang
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuh-Shan Su
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cheng-Hui Yuan
- Mass Spectrometry Laboratory, Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Kuo-Pin Chuang
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Companion Animal Research Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Fekih-Mrissa N, Bedoui I, Sayeh A, Derbali H, Mrad M, Mrissa R, Nsiri B. Association between an angiotensin-converting enzyme gene polymorphism and Alzheimer's disease in a Tunisian population. Ann Gen Psychiatry 2017; 16:41. [PMID: 29176997 PMCID: PMC5693601 DOI: 10.1186/s12991-017-0164-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The angiotensin-converting enzyme gene (ACE) insertion/deletion (I/D or indel) polymorphism has long been linked to Alzheimer's disease (AD), but the interpretation of established data remains controversial. The aim of this study was to determine whether the angiotensin-converting enzyme is associated with the risk of Alzheimer's disease in Tunisian patients. METHODS We analyzed the genotype and allele frequency distribution of the ACE I/D gene polymorphism in 60 Tunisian AD patients and 120 healthy controls. RESULTS There is a significantly increased risk of AD in carriers of the D/D genotype (51.67% in patients vs. 31.67% in controls; p = .008, OR = 2.32). The D allele was also more frequently found in patients compared with controls (71.67% vs. 56.25%; p = .003, OR = 2.0). Moreover, as assessed by the Mini-Mental State Examination, patient D/D carriers were more frequently found to score in the severe category of dementia (65%) as compared to the moderate category (32%) or mild category (3%). CONCLUSIONS The D/D genotype and D allele of the ACE I/D polymorphism were associated with an increased risk in the development of AD in a Tunisian population. Furthermore, at the time of patient evaluation (average age 75 years), patients suffering with severe dementia were found predominantly in D/D carriers and, conversely, the D/D genotype and D allele were more frequently found in AD patients with severe dementia. These preliminary exploratory results should be confirmed in larger studies and further work is required to explore and interpret possible alternative findings in diverse populations.
Collapse
Affiliation(s)
- Najiba Fekih-Mrissa
- Laboratory of Molecular Biology, Department of Hematology, Military Hospital of Tunisia, Mont Fleury, 1008 Tunis, Tunisia
| | - Ines Bedoui
- Department of Neurology, Military Hospital of Tunisia, Montfleury, Tunis, 1008 Tunisia
| | - Aycha Sayeh
- Laboratory of Molecular Biology, Department of Hematology, Military Hospital of Tunisia, Mont Fleury, 1008 Tunis, Tunisia
| | - Hajer Derbali
- Department of Neurology, Military Hospital of Tunisia, Montfleury, Tunis, 1008 Tunisia
| | - Meriem Mrad
- Laboratory of Molecular Biology, Department of Hematology, Military Hospital of Tunisia, Mont Fleury, 1008 Tunis, Tunisia
| | - Ridha Mrissa
- Department of Neurology, Military Hospital of Tunisia, Montfleury, Tunis, 1008 Tunisia
| | - Brahim Nsiri
- Laboratory of Molecular Biology, Department of Hematology, Military Hospital of Tunisia, Mont Fleury, 1008 Tunis, Tunisia
| |
Collapse
|
5
|
Goldstein B, Speth RC, Trivedi M. Renin-angiotensin system gene expression and neurodegenerative diseases. J Renin Angiotensin Aldosterone Syst 2016; 17:17/3/1470320316666750. [PMID: 27613758 PMCID: PMC5843881 DOI: 10.1177/1470320316666750] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/13/2016] [Indexed: 01/05/2023] Open
Abstract
Hypothesis: Single nucleotide polymorphisms and altered gene expression of components of the renin–angiotensin system (RAS) are associated with neurodegenerative diseases. Introduction: Drugs that interact with the RAS have been shown to affect the course of neurodegenerative disease, suggesting that abnormalities in the RAS may contribute to neurodegenerative disease. Materials and methods: A meta-analysis of genome-wide association studies and gene expression data for 14 RAS-related proteins was carried out for five neurodegenerative diseases: Alzheimer’s disease, Parkinson’s disease, narcolepsy, amyotrophic lateral sclerosis and multiple sclerosis. Results: No single nucleotide polymorphisms in any of the 14 RAS-related protein genes were significantly associated with the five neurodegenerative diseases investigated. There was an inverse association between expression of ATP6AP2, which encodes the (pro)renin receptor, and multiple sclerosis, Alzheimer’s disease and Parkinson’s disease. An association of AGTR, which encodes the AT1 angiotensin II receptor, and Parkinson’s disease and Alzheimer’s disease was also observed. Conclusions: To date, no single nucleotide polymorphisms in components of the RAS can be definitively linked to the neurodegenerative diseases evaluated in this study. However, altered gene expression of several components of the RAS is associated with several neurodegenerative diseases, which may indicate that the RAS contributes to the pathology of these diseases.
Collapse
Affiliation(s)
| | - Robert C Speth
- Department of Pharmaceutical Sciences, Nova Southeastern University, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, Nova Southeastern University, USA
| |
Collapse
|