1
|
Rashid MH, Babu D, Siraki AG. Interactions of the antioxidant enzymes NAD(P)H: Quinone oxidoreductase 1 (NQO1) and NRH: Quinone oxidoreductase 2 (NQO2) with pharmacological agents, endogenous biochemicals and environmental contaminants. Chem Biol Interact 2021; 345:109574. [PMID: 34228969 DOI: 10.1016/j.cbi.2021.109574] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 01/11/2023]
Abstract
NAD(P)H Quinone Oxidoreductase 1 (NQO1) is an antioxidant enzyme that catalyzes the two-electron reduction of several different classes of quinone-like compounds (quinones, quinone imines, nitroaromatics, and azo dyes). One-electron reduction of quinone or quinone-like metabolites is considered to generate semiquinones to initiate redox cycling that is responsible for the generation of reactive oxygen species and oxidative stress and may contribute to the initiation of adverse drug reactions and adverse health effects. On the other hand, the two-electron reduction of quinoid compounds appears important for drug activation (bioreductive activation) via chemical rearrangement or autoxidation. Two-electron reduction decreases quinone levels and opportunities for the generation of reactive species that can deplete intracellular thiol pools. Also, studies have shown that induction or depletion (knockout) of NQO1 were associated with decreased or increased susceptibilities to oxidative stress, respectively. Moreover, another member of the quinone reductase family, NRH: Quinone Oxidoreductase 2 (NQO2), has a significant functional and structural similarity with NQO1. The activity of both antioxidant enzymes, NQO1 and NQO2, becomes critically important when other detoxification pathways are exhausted. Therefore, this article summarizes the interactions of NQO1 and NQO2 with different pharmacological agents, endogenous biochemicals, and environmental contaminants that would be useful in the development of therapeutic approaches to reduce the adverse drug reactions as well as protection against quinone-induced oxidative damage. Also, future directions and areas of further study for NQO1 and NQO2 are discussed.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Institute of Food and Radiation Biology, Bangladesh Atomic Energy Commission, Bangladesh
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
2
|
Lee YS, Park SY, Heo HJ, Lee WS, Hong KW, Kim CD. Multitarget-directed cotreatment with cilostazol and aripiprazole for augmented neuroprotection against oxidative stress-induced toxicity in HT22 mouse hippocampal cells. Eur J Pharmacol 2019; 857:172454. [PMID: 31202803 DOI: 10.1016/j.ejphar.2019.172454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
Cerebrovascular dysfunction is crucially associated with cognitive impairment and a high prevalence of psychotic symptoms in the vascular dementia characterized by oxidative stress and multifactorial neurodegeneration. In this study, the significant decrease in BDNF expression in HT22 cells due to H2O2 (0.25 mM) was little affected by either aripiprazole (1 μM) or cilostazol (1 μM) alone, but significantly increased by cotreatment with both drugs. Even in the presence of H2O2, P-CK2α (Tyr 255), nuclear P-CREB (Ser 133), and nuclear P-β-catenin (Ser 675) levels were significantly increased in a synergistic manner by aripiprazole plus cilostazol cotreatment. Aripiprazole and cilostazol cotreatment synergistically increased P-GSK-3β (Ser 9) level. Nrf2/HO-1 expression was significantly elevated time- and concentration-dependently by either aripiprazole or cilostazol. In line with these, concurrent treatment with aripiprazole (1 μM) plus cilostazol (1 μM) significantly increased Nrf2 and HO-1 expression in a synergistic manner, accompanying with increased ARE luciferase activity, while each drug monotherapy showed little effects. Consequently, this cotreatment synergistically ameliorated the attenuated neurite outgrowth induced by H2O2 in the HT22 cells, and these were inhibited by K252A (inhibitor of BDNF receptor), TBCA (CK2 inhibitor), imatinib (β-catenin inhibitor) and ZnPP (inhibitor of HO-1), indicating that BDNF, P-CK2α, β-catenin and HO-1 activation are implicated in the enhanced neurite outgrowth. This study highlights that cotreatment with low concentrations of aripiprazole and cilostazol synergistically elicits neuroprotective effects by overcoming oxidative stress-evoked neurotoxicity associated with increased neurite outgrowth, providing a rationale for the use of this combinatorial treatment in vascular dementia.
Collapse
Affiliation(s)
- Yi Sle Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - So Youn Park
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hye Jin Heo
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Won Suk Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Ki Whan Hong
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
3
|
Mai HN, Sharma N, Shin EJ, Nguyen BT, Nguyen PT, Jeong JH, Cho EH, Lee YJ, Kim NH, Jang CG, Nabeshima T, Kim HC. Exposure to far-infrared ray attenuates methamphetamine-induced impairment in recognition memory through inhibition of protein kinase C δ in male mice: Comparison with the antipsychotic clozapine. J Neurosci Res 2018; 96:1294-1310. [PMID: 29476655 DOI: 10.1002/jnr.24228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated that repeated treatment with methamphetamine (MA) results in a recognition memory impairment via upregulation of protein kinase C (PKC) δ and downregulation of the glutathione peroxidase-1 (GPx-1)-dependent antioxidant system. We also demonstrated that far-infrared ray (FIR) attenuates acute restraint stress via induction of the GPx-1 gene. Herein, we investigated whether exposure to FIR modulates MA-induced recognition memory impairment in male mice, and whether cognitive potentials mediated by FIR require modulation of the PKCδ gene, extracellular signal-regulated kinase (ERK) 1/2, and glutathione-dependent system. Repeated treatment with MA significantly increased PKCδ expression and its phosphorylation out of PKC isoenzymes (i.e., PKCα, PKCβI, PKCβII, PKCζ, and PKCδ expression) in the prefrontal cortex of mice. Exposure to FIR significantly attenuated MA-induced increase in phospho-PKCδ and decrease in phospho-ERK 1/2. In addition, FIR further facilitated the nuclear factor E2-related factor 2 (Nrf2)-dependent glutathione synthetic system. Moreover, L-buthionine-(S, R)-sulfoximine, an inhibitor of glutathione synthesis, counteracted the FIR-mediated phospho-ERK 1/2 induction and memory-enhancing activity against MA insult. More important, positive effects of FIR are comparable to those of genetic depletion of PKCδ or the antipsychotic clozapine. Our results indicate that FIR protects against MA-induced memory impairment via activations of the Nrf2-dependent glutathione synthetic system, and ERK 1/2 signaling by inhibition of the PKCδ gene.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Phuong Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacology, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University Suwon, Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, Japan.,Aino University, Ibaragi, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|