1
|
Lasisi WO, Wadden KP, Kirkland MC, Critch AL, Newell CJ, Alcock LR, Ploughman M. Short-latency afferent inhibition and its relationship to covert sensory and motor hand impairment in multiple sclerosis. Clin Neurophysiol 2024; 167:106-116. [PMID: 39307101 DOI: 10.1016/j.clinph.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE To investigate sensorimotor integration by quantifying short-latency afferent inhibition (SAI) in people with MS who experience manual dexterity problems compared to controls. METHODS 22 people with MS with self-reported manual dexterity problems and 10 sex and age-matched controls were assessed using various upper extremity clinical tests. SAI was assessed by a transcranial magnetic stimulation pulse over the primary motor cortex preceded by peripheral nerve stimulation to the median nerve at 6 interstimulus intervals 2 - 8 ms longer than individualized N20 latencies. RESULTS Although within normal limits, persons with MS exhibited significantly slower Nine Hole Peg Test performance and pinch strength in the dominant hand. They also exhibited greater sensory impairment (monofilament test) in the dominant hand. Persons with MS showed significantly greater disinhibition of SAI in the dominant hand compared to controls, which was significantly correlated with weaker pinch strength. CONCLUSION Reduced SAI in people with MS, particularly in the dominant hand, signifies disruptions in cortical cholinergic inhibitory activity and is associated with lower pinch strength. SIGNIFICANCE Evaluating changes in SAI may offer insight into the disrupted cortical cholinergic inhibitory activity that contributes to sensorimotor disintegration, potentially advancing disease management in persons with MS.
Collapse
Affiliation(s)
- Wendy O Lasisi
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Katie P Wadden
- Wadden Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Megan C Kirkland
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Amber L Critch
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Caitlin J Newell
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Lynsey R Alcock
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Michelle Ploughman
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|
2
|
Mimura Y, Tobari Y, Nakahara K, Nakajima S, Yoshida K, Mimura M, Noda Y. Transcranial magnetic stimulation neurophysiology in patients with non-Alzheimer's neurodegenerative diseases: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 155:105451. [PMID: 37926239 DOI: 10.1016/j.neubiorev.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Non-Alzheimer's dementia (NAD) accounts for 30% of all neurodegenerative conditions and is characterized by cognitive decline beyond mere memory dysfunction. Diagnosing NAD remains challenging due to the lack of established biomarkers. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological tool that enables the investigation of cortical excitability in the human brain. Paired-pulse TMS paradigms include short- and long-interval intracortical inhibition (SICI/LICI), intracortical facilitation (ICF), and short-latency afferent inhibition (SAI), which can assess neurophysiological functions of GABAergic, glutamatergic, and cholinergic neural circuits, respectively. We conducted the first systematic review and meta-analysis to compare these TMS indices among patients with NAD and healthy controls. Our meta-analyses indicated that TMS neurophysiological examinations revealed decreased glutamatergic function in patients with frontotemporal dementia (FTD) and decreased GABAergic function in patients with FTD, progressive supranuclear palsy, Huntington's disease, cortico-basal syndrome, and multiple system atrophy-parkinsonian type. In addition, decreased cholinergic function was found in dementia with Lewy body and vascular dementia. These results suggest the potential of TMS as an additional diagnostic tool to differentiate NAD.
Collapse
Affiliation(s)
- Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazuho Nakahara
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada; Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Wang L, Ji M, Sun H, Gan C, Zhang H, Cao X, Yuan Y, Zhang K. Reduced Short-Latency Afferent Inhibition in Parkinson's Disease Patients with L-dopa-Unresponsive Freezing of Gait. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2507-2518. [PMID: 36502341 DOI: 10.3233/jpd-223498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Freezing of gait (FOG) in Parkinson's disease (PD), especially the "L-dopa-unresponsive" subtype, is associated with the dysfunction of non-dopaminergic circuits. OBJECTIVE We sought to determine whether cortical sensorimotor inhibition evaluated by short-latency afferent inhibition (SAI) related to cholinergic and gamma-aminobutyric acid (GABA)-ergic activities is impaired in PD patients with L-dopa-unresponsive FOG (ONOFF-FOG). METHODS SAI protocol was performed in 28 PD patients with ONOFF-FOG, 15 PD patients with "off" FOG (OFF-FOG), and 25 PD patients without FOG during medication "on" state. Additionally, 10 ONOFF-FOG patients underwent SAI testing during both "off" and "on" states. Twenty healthy controls participated in this study. Gait was measured objectively using a portable Inertial Measurement Unit system, and participants performed 5-meter Timed Up and Go single- and dual-task conditions. Spatiotemporal gait characteristics and their variability were determined. FOG manifestations and cognition were assessed with clinical scales. RESULTS Compared to controls, PD patients without FOG and with OFF-FOG, ONOFF-FOG PD patients showed significantly reduced SAI. Further, dopaminergic therapy had no remarkable effect on this SAI alterations in ONOFF-FOG. Meanwhile, OFF-FOG patients presented decreased SAI only relative to controls. PD patients with ONOFF-FOG exhibited decreased gait speed, stride length, and increased gait variability relative to PD patients without FOG and controls under both walking conditions. For ONOFF-FOG patients, significant associations were found between SAI and FOG severity, gait characteristics and variability. CONCLUSION Reduced SAI was associated with severe FOG manifestations, impaired gait characteristics and variability in PD patients with ONOFF-FOG, suggesting the impaired thalamocortical cholinergic-GABAergic SAI pathways underlying ONOFF-FOG.
Collapse
Affiliation(s)
- Lina Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Ji
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Youn J, Umemoto G, Oh E, Park J, Jang W, Oh YS, Kim HT, Cho JW, Fujioka S, Tsuboi Y. Cardiac sympathetic denervation could be associated with dysphagia in Parkinson's disease. Front Neurol 2022; 13:1010006. [PMID: 36303556 PMCID: PMC9592804 DOI: 10.3389/fneur.2022.1010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDysphagia is an important non-motor symptom that is closely associated with quality of living and mortality in Parkinson's disease (PD). However, the pathophysiology of dysphagia in PD remains inconclusive. We tried to confirm whether the occurrence of dysphagia could be related to sympathetic degeneration using cardiac 123I-metaiodobenzylguanidine (MIBG) scintigraphy.MethodsWe prospectively recruited 27 PD patients and classified them into two groups (PD with dysphagia vs. PD without dysphagia) by Swallowing Disturbance Questionnaire (SDQ) score and compared the clinical characteristics, videofluoroscopic swallowing study (VFSS) findings and parameters from cardiac MIBG scintigraphy.ResultsThe mean early and late H/M ratios were significantly lower in the PD with dysphagia group than those in the PD without dysphagia group (1.39 ± 0.21 vs. 1.86 ± 0.21, p < 0.01; 1.26 ± 0.18 vs. 1.82 ± 0.29, p < 0.01). In the correlation analysis, both the early and late H/M ratios were negatively correlated with the SDQ score and total VDS score (r = −0.65, p < 0.01; r = −0.53, p < 0.01; r = −0.65, p < 0.01, r = −0.58, p < 0.01).ConclusionWe confirmed that cardiac sympathetic denervation might be associated with the presence and severity of dysphagia. This finding indicates that dysphagia in PD could be associated with a nondopaminergic mechanism.
Collapse
Affiliation(s)
- Jinyoung Youn
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - George Umemoto
- Swallowing Disorders Center, Fukuoka University Hospital, Fukuoka, Japan
| | - Eungseok Oh
- Department of Neurology, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Jinse Park
- Department of Neurology, Inje University, Haeundae Paik Hospital, Busan, South Korea
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
- *Correspondence: Wooyoung Jang
| | - Yoon-Sang Oh
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hee-Tae Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Shinsuke Fujioka
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Shinsuke Fujioka
| | - Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
5
|
Gong S, Gao Y, Liu J, Li J, Tang X, Ran Q, Tang R, Liao C. The prevalence and associated factors of dysphagia in Parkinson's disease: A systematic review and meta-analysis. Front Neurol 2022; 13:1000527. [PMID: 36277913 PMCID: PMC9582284 DOI: 10.3389/fneur.2022.1000527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background The prevalence and associated factors of dysphagia in Parkinson's disease (PD) are different in studies conducted in different countries. The purpose of our systematic review and meta-analysis was to evaluate the prevalence of dysphagia in PD and to clarify its associated factors. Methods Two researchers systematically searched PubMed, Embase, Web of Science, Cochrane Library, CNKI, Wanfang Database, SinoMed and VIP databases and manually searched references in the retrieved articles to identify potential research subjects. The last search was conducted on June 28, 2022. Finally, a total of 58 studies including 60 observations with 20,530 PD patients were included in our meta-analysis. Results The meta-analysis estimated that the pooled prevalence rate of dysphagia in PD was 36.9% (95% CI: 30.7–43.6%) and instrumental examination showed a higher prevalence (57.3%, 95% CI: 44.3–69.1%). Oceania showed the highest prevalence of dysphagia in PD (56.3%) compared to Africa (39.5%), Asia (38.6%), Europe (36.1%) and America (28.9%). Dysphagia in PD was associated with older age, lower body mass index, longer disease duration, higher Hoehn and Yahr stage and levodopa equivalent daily dose, PIGD subtype, severe motor symptoms, drooling and higher levels of depression, and lower quality of life. Conclusions In conclusion, our meta-analysis showed that dysphagia occurs in more than one-third of PD patients and was associated with several demographic characteristics and PD-related characteristics, motor symptoms, non-motor symptoms, as well as decreased quality of life. It deserves early screening, diagnosis, and treatment in clinical practice to prevent serious complications from dysphagia.
Collapse
Affiliation(s)
- Siyuan Gong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Gao
- Nursing Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jihong Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueqin Tang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Ran
- Endocrinology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rongzhu Tang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunlian Liao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chunlian Liao
| |
Collapse
|
6
|
Short latency afferent inhibition correlates with stage of disease in Parkinson's patients. Can J Neurol Sci 2022:1-5. [PMID: 35684949 DOI: 10.1017/cjn.2022.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Oh E, Park J, Youn J, Jang W. Anodal Transcranial Direct Current Stimulation Could Modulate Cortical Excitability and the Central Cholinergic System in Akinetic Rigid-Type Parkinson's Disease: Pilot Study. Front Neurol 2022; 13:830976. [PMID: 35401397 PMCID: PMC8987019 DOI: 10.3389/fneur.2022.830976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been widely studied as an alternative treatment for Parkinson's disease (PD). However, its clinical benefit remains unclear. In this study, we aimed to investigate the effect of tDCS on the central cholinergic system and cortical excitability in mainly akinetic rigid-type patients with PD. Methods In total, 18 patients with PD were prospectively enrolled and underwent 5 sessions of anodal tDCS on the M1 area, which is on the contralateral side of the dominant hand. We excluded patients with PD who had evident resting tremor of the hand to reduce the artifact of electrophysiologic findings. We compared clinical scales reflecting motor, cognitive, and mood symptoms between pre- and post-tDCS. Additionally, we investigated the changes in electrophysiologic parameters, such as short latency afferent inhibition (SAI) (%), which reflects the central cholinergic system. Results The United Parkinson's Disease Rating Scale Part 3 (UPDRS-III), the Korean-Montreal Cognitive Assessment (MoCA-K), and Beck Depression Inventory (BDI) scores were significantly improved after anodal tDCS (p < 0.01, p < 0.01, and p < 0.01). Moreover, motor evoked potential amplitude ratio (MEPAR) (%) and integrated SAI showed significant improvement after tDCS (p < 0.01 and p < 0.01). The mean values of the change in integrated SAI (%) were significantly correlated with the changes in UPDRS-III scores; however, the MoCA-K and BDI scores did not show differences. Conclusions Anodal tDCS could influence the central cholinergic system, such as frontal cortical excitability and depression in PD. This mechanism could underlie the clinical benefit of tDCS in patients with PD.
Collapse
Affiliation(s)
- Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Jinse Park
- Department of Neurology, Haeundae Paik Hospital, Inje University, Busan, South Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Seoul, South Korea
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
- *Correspondence: Wooyoung Jang
| |
Collapse
|
8
|
Han MN, Finkelstein DI, McQuade RM, Diwakarla S. Gastrointestinal Dysfunction in Parkinson’s Disease: Current and Potential Therapeutics. J Pers Med 2022; 12:jpm12020144. [PMID: 35207632 PMCID: PMC8875119 DOI: 10.3390/jpm12020144] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Abnormalities in the gastrointestinal (GI) tract of Parkinson’s disease (PD) sufferers were first reported over 200 years ago; however, the extent and role of GI dysfunction in PD disease progression is still unknown. GI dysfunctions, including dysphagia, gastroparesis, and constipation, are amongst the most prevalent non-motor symptoms in PD. These symptoms not only impact patient quality of life, but also complicate disease management. Conventional treatment pathways for GI dysfunctions (i.e., constipation), such as increasing fibre and fluid intake, and the use of over-the-counter laxatives, are generally ineffective in PD patients, and approved compounds such as guanylate cyclase C agonists and selective 5-hyroxytryptamine 4 receptor agonists have demonstrated limited efficacy. Thus, identification of potential targets for novel therapies to alleviate PD-induced GI dysfunctions are essential to improve clinical outcomes and quality of life in people with PD. Unlike the central nervous system (CNS), where PD pathology and the mechanisms involved in CNS damage are relatively well characterised, the effect of PD at the cellular and tissue level in the enteric nervous system (ENS) remains unclear, making it difficult to alleviate or reverse GI symptoms. However, the resurgence of interest in understanding how the GI tract is involved in various disease states, such as PD, has resulted in the identification of novel therapeutic avenues. This review focuses on common PD-related GI symptoms, and summarizes the current treatments available and their limitations. We propose that by targeting the intestinal barrier, ENS, and/or the gut microbiome, may prove successful in alleviating PD-related GI symptoms, and discuss emerging therapies and potential drugs that could be repurposed to target these areas.
Collapse
Affiliation(s)
- Myat Noe Han
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3021, Australia; (M.N.H.); (S.D.)
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - David I. Finkelstein
- Parkinson’s Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia;
| | - Rachel M. McQuade
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3021, Australia; (M.N.H.); (S.D.)
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence: ; Tel.: +61-3-8395-8114
| | - Shanti Diwakarla
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3021, Australia; (M.N.H.); (S.D.)
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
9
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
10
|
A multinational consensus on dysphagia in Parkinson's disease: screening, diagnosis and prognostic value. J Neurol 2021; 269:1335-1352. [PMID: 34417870 PMCID: PMC8857094 DOI: 10.1007/s00415-021-10739-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a combination of motor and non-motor dysfunction. Dysphagia is a common symptom in PD, though it is still too frequently underdiagnosed. Consensus is lacking on screening, diagnosis, and prognosis of dysphagia in PD.
Objective To systematically review the literature and to define consensus statements on the screening and the diagnosis of dysphagia in PD, as well as on the impact of dysphagia on the prognosis and quality of life (QoL) of PD patients.
Methods A multinational group of experts in the field of neurogenic dysphagia and/or PD conducted a systematic revision of the literature published since January 1990 to February 2021 and reported the results according to PRISMA guidelines. The output of the research was then analyzed and discussed in a consensus conference convened in Pavia, Italy, where the consensus statements were drafted. The final version of statements was subsequently achieved by e-mail consensus.
Results Eighty-five papers were used to inform the Panel’s statements even though most of them were of Class IV quality. The statements tackled four main areas: (1) screening of dysphagia: timing and tools; (2) diagnosis of dysphagia: clinical and instrumental detection, severity assessment; (3) dysphagia and QoL: impact and assessment; (4) prognostic value of dysphagia; impact on the outcome and role of associated conditions. Conclusions The statements elaborated by the Consensus Panel provide a framework to guide the neurologist in the timely detection and accurate diagnosis of dysphagia in PD. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10739-8.
Collapse
|
11
|
Impact of Progression of Parkinson's Disease on Swallowing Ability and Oral Environment. PARKINSONS DISEASE 2021; 2021:5571556. [PMID: 33981405 PMCID: PMC8088364 DOI: 10.1155/2021/5571556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/10/2021] [Accepted: 04/17/2021] [Indexed: 01/22/2023]
Abstract
This study investigated the impact of the severity and treatment of Parkinson's disease (PD) on the swallowing ability and oral environment of patients. Swallowing dysfunction increases the aspiration risk and may lead to poor oral health among patients with PD. We investigated the influences of PD progression and drug treatment on the swallowing ability and oral environment using simple noninvasive screening measurements. We recruited 87 patients with PD (mean age, 71.9 ± 8.0 years; mean Hoehn and Yahr score, 2.9 ± 0.9). The PD condition was assessed in each patient using the unified Parkinson's disease rating scale (UPDRS) part III, diet type and oropharyngeal function using the swallowing disturbances questionnaire (SDQ), maximum bite force (MBF), tongue pressure (TP), and oral bacterial count (OBC). Levodopa equivalent daily dose (LEDD) was also calculated for 56 participants. Based on an SDQ score of ≥11, 29.5% of patients were dysphagic, but almost all were still on a regular diet. The SDQ score was positively correlated with disease duration (rho = 0.228, p=0.047) and UPDRS part III score (rho = 0.307, p=0.007) but was negatively correlated with OBC (rho = -0.289, p=0.012). OBC was significantly higher among patients with an SDQ score of <11 (nondysphagic) (p=0.01), and the SDQ score was lower in patients with higher OBC requiring professional oral care (p=0.03). However, OBC was also negatively correlated with LEDD (rho = -0.411, p=0.004). These results indicated low self-awareness of dysphagia among the participants and an association between dysphagia and PD progression. Moreover, the oral environment could have deteriorated with swallowing dysfunction. Patients and clinicians should be aware that higher LEDD can increase xerostomia and associated deficits in oral health.
Collapse
|
12
|
Turco CV, Toepp SL, Foglia SD, Dans PW, Nelson AJ. Association of short- and long-latency afferent inhibition with human behavior. Clin Neurophysiol 2021; 132:1462-1480. [PMID: 34030051 DOI: 10.1016/j.clinph.2021.02.402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/04/2023]
Abstract
Transcranial magnetic stimulation (TMS) paired with nerve stimulation evokes short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI), which are non-invasive assessments of the excitability of the sensorimotor system. SAI and LAI are abnormally reduced in various special populations in comparison to healthy controls. However, the relationship between afferent inhibition and human behavior remains unclear. The purpose of this review is to survey the current literature and synthesize observations and patterns that affect the interpretation of SAI and LAI in the context of human behavior. We discuss human behaviour across the motor and cognitive domains, and in special and control populations. Further, we discuss future considerations for research in this field and the potential for clinical applications. By understanding how human behavior is mediated by changes in SAI and LAI, this can allow us to better understand the neurophysiological underpinnings of human motor control.
Collapse
Affiliation(s)
- Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stevie D Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Patrick W Dans
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
13
|
A new swallowing supplement for dysphagia in patients with Parkinson's disease. Neurol Sci 2020; 42:1949-1958. [PMID: 32980984 DOI: 10.1007/s10072-020-04730-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Dysphagia associated with Parkinson's disease (PD) affects the mortality and quality of life of patients with PD. Avoiding aspiration and maintaining swallowing ability are among the concerns regarding PD care. Therefore, we developed a swallowing supplement for easier swallowing and tolerability in patients with PD. Thirty patients with PD and 50 healthy controls were enrolled and their swallowing function measured using the videofluoroscopic swallowing study (VFSS) and several dysphagia scales. The Unified Parkinson's Disease Rating Scale motor scores, Hoehn and Yahr stage, and levodopa doses were evaluated in patients with PD. The VFSS and survey were used to assess the viscosity, color, taste, nutrition, safety, and tolerability of the swallowing supplement. The MMSE score, serum albumin, and hemoglobin levels, and oral conditions were worse in the PD group than in the control group. Compared with controls, patients with PD had significantly lower total and sub-item scores of the swallowing quality of life (swal-QoL). Using commercialized yogurt, the pharyngeal delay time (PDT) and the modified penetration aspiration scale were higher in the PD group than in the control group. The swallowing supplement significantly shortened the PDT and pharyngeal transit time (PTT). Moreover, compared with commercialized yogurt, it improved pharyngeal wall coating, PTT, and aspiration in the videofluoroscopic dysphagia subscales. The survey scores were above average to good in the "easy swallowing" and "pharyngeal residual sense" items and tolerable in the remaining 6 preference items. This swallowing supplement could prevent aspiration and dysphagia complications in patients with PD.
Collapse
|
14
|
Manzano S, Agüera L, Aguilar M, Olazarán J. A Review on Tramiprosate (Homotaurine) in Alzheimer's Disease and Other Neurocognitive Disorders. Front Neurol 2020; 11:614. [PMID: 32733362 PMCID: PMC7358344 DOI: 10.3389/fneur.2020.00614] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative condition, especially among elderly people. The presence of cortical β-amyloid deposition, together with tau phosphorylation and intracellular accumulation of neurofibrillary tangles (NFT) is the main neuropathologic criteria for AD diagnosis. Additionally, a role of inflammatory, mitochondrial, and metabolic factors has been suggested. Tramiprosate binds to soluble amyloid, thus inhibiting its aggregation in the brain. It reduced oligomeric and fibrillar (plaque) amyloid, diminished hippocampal atrophy, improved cholinergic transmission, and stabilized cognition in preclinical and clinical studies. In this narrative review, current information on the efficacy and safety of tramiprosate, both in AD and in other neurocognitive disorders, is presented. Possible directions for future studies with tramiprosate are also discussed.
Collapse
Affiliation(s)
| | - Luis Agüera
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miquel Aguilar
- Unit of Neurodegenerative Diseases DOMUS-Vi, Department of Neurology - Àptima Terrassa, Barcelona, Spain
| | - Javier Olazarán
- Memory Disorders Unit, HM Hospitals & Neurology Service, Gregorio Marañón Hospital, Madrid, Spain
| |
Collapse
|
15
|
Bologna M, Paparella G, Fasano A, Hallett M, Berardelli A. Evolving concepts on bradykinesia. Brain 2020; 143:727-750. [PMID: 31834375 PMCID: PMC8205506 DOI: 10.1093/brain/awz344] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease and other parkinsonisms. The various clinical aspects related to bradykinesia and the pathophysiological mechanisms underlying bradykinesia are, however, still unclear. In this article, we review clinical and experimental studies on bradykinesia performed in patients with Parkinson's disease and atypical parkinsonism. We also review studies on animal experiments dealing with pathophysiological aspects of the parkinsonian state. In Parkinson's disease, bradykinesia is characterized by slowness, the reduced amplitude of movement, and sequence effect. These features are also present in atypical parkinsonisms, but the sequence effect is not common. Levodopa therapy improves bradykinesia, but treatment variably affects the bradykinesia features and does not significantly modify the sequence effect. Findings from animal and patients demonstrate the role of the basal ganglia and other interconnected structures, such as the primary motor cortex and cerebellum, as well as the contribution of abnormal sensorimotor processing. Bradykinesia should be interpreted as arising from network dysfunction. A better understanding of bradykinesia pathophysiology will serve as the new starting point for clinical and experimental purposes.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
16
|
Chen Z, Li G, Liu J. Autonomic dysfunction in Parkinson's disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiol Dis 2019; 134:104700. [PMID: 31809788 DOI: 10.1016/j.nbd.2019.104700] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a 200 year-long research history. Our understanding about its clinical phenotype and pathogenesis remains limited, although dopaminergic replacement therapy has significantly improved patient outcomes. Autonomic dysfunction is an essential category of non-motor phenotypes that has recently become a cutting edge field that directs frontier research in PD. In this review, we initially describe the epidemiology of dysautonomic symptoms in PD. Then, we perform a meticulous analysis of the pathophysiology of autonomic dysfunction in PD and propose that the peripheral autonomic nervous system may be a key route for α-synuclein pathology propagation from the periphery to the central nervous system. In addition, we recommend that constipation, orthostatic hypotension, urinary dysfunction, erectile dysfunction, and pure autonomic failure should be viewed as prodromal dysautonomic markers in PD prediction and diagnosis. Finally, we summarize the strategies currently available for the treatment of autonomic dysfunction in PD and suggest that high-quality, better-designed, randomized clinical trials should be conducted in the future.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology, Institute of Neurology, Ruijin Hospital affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglu Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology, Institute of Neurology, Ruijin Hospital affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Dubbioso R, Manganelli F, Siebner HR, Di Lazzaro V. Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson's Disease. Front Hum Neurosci 2019; 13:111. [PMID: 31024277 PMCID: PMC6463734 DOI: 10.3389/fnhum.2019.00111] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Parkinson's Disease (PD) is a prototypical basal ganglia disorder. Nigrostriatal dopaminergic denervation leads to progressive dysfunction of the cortico-basal ganglia-thalamo-cortical sensorimotor loops, causing the classical motor symptoms. Although the basal ganglia do not receive direct sensory input, they are important for sensorimotor integration. Therefore, the basal ganglia dysfunction in PD may profoundly affect sensory-motor interaction in the cortex. Cortical sensorimotor integration can be probed with transcranial magnetic stimulation (TMS) using a well-established conditioning-test paradigm, called short-latency afferent inhibition (SAI). SAI probes the fast-inhibitory effect of a conditioning peripheral electrical stimulus on the motor response evoked by a TMS test pulse given to the contralateral primary motor cortex (M1). Since SAI occurs at latencies that match the peaks of early cortical somatosensory potentials, the cortical circuitry generating SAI may play an important role in rapid online adjustments of cortical motor output to changes in somatosensory inputs. Here we review the existing studies that have used SAI to examine how PD affects fast cortical sensory-motor integration. Studies of SAI in PD have yielded variable results, showing reduced, normal or even enhanced levels of SAI. This variability may be attributed to the fact that the strength of SAI is influenced by several factors, such as differences in dopaminergic treatment or the clinical phenotype of PD. Inter-individual differences in the expression of SAI has been shown to scale with individual motor impairment as revealed by UPDRS motor score and thus, may reflect the magnitude of dopaminergic neurodegeneration. The magnitude of SAI has also been linked to cognitive dysfunction, and it has been suggested that SAI also reflects cholinergic denervation at the cortical level. Together, the results indicate that SAI is a useful marker of disease-related alterations in fast cortical sensory-motor integration driven by subcortical changes in the dopaminergic and cholinergic system. Since a multitude of neurobiological factors contribute to the magnitude of inhibition, any mechanistic interpretation of SAI changes in PD needs to consider the group characteristics in terms of phenotypical spectrum, disease stage, and medication.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
18
|
Rota L, Pellegrini C, Benvenuti L, Antonioli L, Fornai M, Blandizzi C, Cattaneo A, Colla E. Constipation, deficit in colon contractions and alpha-synuclein inclusions within the colon precede motor abnormalities and neurodegeneration in the central nervous system in a mouse model of alpha-synucleinopathy. Transl Neurodegener 2019; 8:5. [PMID: 30774946 PMCID: PMC6364448 DOI: 10.1186/s40035-019-0146-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Background Gastrointestinal dysfunction can affect Parkinson’s disease (PD) patients long before the onset of motor symptoms. However, little is known about the relationship between gastrointestinal abnormalities and the development of PD. Contrary to other animal models, the human A53T alpha-synuclein (αS) transgenic mice, Line G2–3, develops αS-driven neurological and motor impairments after 9 months of age, displaying a long presymptomatic phase free of central nervous system (CNS) dysfunction. Methods To determine whether this line can be suitable to study constipation as it occurs in prodromal PD, gastrointestinal functionality was assessed in young mice through a multidisciplinary approach, based on behavioral and biochemical analysis combined with electrophysiological recordings of mouse intestinal preparations. Results We found that the A53T αS mice display remarkable signs of gastrointestinal dysfunction that precede motor abnormalities and αS pathology in the CNS by at least 6 months. Young αS mice show a drastic delay in food transit along the gastrointestinal tract, of almost 2 h in 3 months old mice that increased to more than 3 h at 6 months. Such impairment was associated with abnormal formation of stools that resulted in less abundant but longer pellets excreted, suggesting a deficit in the intestinal peristalsis. In agreement with this, electrically evoked contractions of the colon, but not of the ileum, showed a reduced motor response in both longitudinal and circular muscle layers in αS mice already at 3 months of age, that was mainly due to an impaired cholinergic transmission of the underlying enteric nervous system. Interestingly, the presence of insoluble and aggregated αS was found in enteric neurons in both myenteric and submucosal plexi only in the colon of 3 months old αS mice, but not in the small intestine, and exacerbated with age, mimicking the increase in transit delay and the contraction deficit showed by behavioral and electrical recordings data. Conclusions Gastrointestinal dysfunction in A53T αS mice represents an early sign of αS-driven pathology without concomitant CNS involvement. We believe that this model can be very useful to study disease-modifying strategies that could extend the prodromal phase of PD and halt αS pathology from reaching the brain. Electronic supplementary material The online version of this article (10.1186/s40035-019-0146-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucia Rota
- 1Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | | - Laura Benvenuti
- 3Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Luca Antonioli
- 3Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Matteo Fornai
- 3Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Corrado Blandizzi
- 3Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Antonino Cattaneo
- 1Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.,4Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Viale Regina Elena 295, Rome, 00161 Italy
| | - Emanuela Colla
- 1Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
19
|
Pitts LL, Morales S, Stierwalt JAG. Lingual Pressure as a Clinical Indicator of Swallowing Function in Parkinson's Disease. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2018; 61:257-265. [PMID: 29396576 DOI: 10.1044/2017_jslhr-s-17-0259] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE Swallowing impairment, or dysphagia, is a known contributor to reduced quality of life, pneumonia, and mortality in Parkinson's disease (PD). However, the contribution of tongue dysfunction, specifically inadequate pressure generation, to dysphagia in PD remains unclear. Our purpose was to determine whether lingual pressures in PD are (a) reduced, (b) reflect medication state, or are (c) consistent with self-reported diet and swallowing function. METHOD Twenty-eight persons with idiopathic PD (PwPD) and 28 age- and sex-matched controls completed lingual pressure tasks with the Iowa Oral Performance Instrument. PwPD were tested during practically defined ON and OFF dopaminergic medication states. Participants were also stratified into three sex- and age-matched cohorts (7 men, 5 women): (a) controls, (b) PwPD without self-reported dysphagia symptoms or diet restrictions, and (c) PwPD with self-reported dysphagia symptoms with or without diet restrictions. RESULTS PwPD exhibited reduced tongue strength and used elevated proportions of tongue strength during swallowing compared with controls (p < .05) without an effect of medication state (p > .05). Reduced tongue strength distinguished PwPD with self-reported dysphagia symptoms from PwPD without reported symptoms or diet restrictions (p = .045) and controls (p = .002). CONCLUSION Tongue strength was significantly reduced in PwPD and did not differ by medication state. Tongue strength differentiated between PwPD with and without self-reported swallowing symptoms. Therefore, measures of tongue strength and swallowing pressures may serve as clinical indicators for further dysphagia evaluation and may promote early diagnosis and management of dysphagia in PD.
Collapse
Affiliation(s)
- Laura L Pitts
- Department of Communication Sciences & Disorders, University of Northern Iowa, Cedar Falls
- Department of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Speech-Language Pathology, Shirley Ryan AbilityLab, Chicago, IL
- School of Communication Science & Disorders, Florida State University, Tallahassee
| | - Sarah Morales
- Department of Communication Sciences & Disorders, University of Northern Iowa, Cedar Falls
| | - Julie A G Stierwalt
- School of Communication Science & Disorders, Florida State University, Tallahassee
- Division of Speech Pathology, Department of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
20
|
Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul 2018; 11:59-74. [PMID: 28964754 DOI: 10.1016/j.brs.2017.09.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
|
21
|
Cortical afferent inhibition abnormalities reveal cholinergic dysfunction in Parkinson’s disease: a reappraisal. J Neural Transm (Vienna) 2017; 124:1417-1429. [DOI: 10.1007/s00702-017-1775-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
|
22
|
In vivo evaluation of central cholinergic circuits in Parkinson's disease using transcranial magnetic stimulation. Clin Neurophysiol 2017; 128:1028-1029. [DOI: 10.1016/j.clinph.2017.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/19/2022]
|
23
|
Oh E, Park J, Youn J, Kim JS, Park S, Jang W. Olfactory dysfunction in early Parkinson's disease is associated with short latency afferent inhibition reflecting central cholinergic dysfunction. Clin Neurophysiol 2017; 128:1061-1068. [PMID: 28400098 DOI: 10.1016/j.clinph.2017.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Our study aimed to determine whether the short latency afferent inhibition (SAI) response could be associated with the severity of olfactory dysfunction in PD patients. METHODS A total of 71 PD patients and 20 controls were enrolled. All PD patients were classified into 3 groups by the severity of the olfactory deficit. Single-pulse transmagnetic stimulation (TMS) parameters and SAI were assessed. RESULTS The integrated SAI in the PD with anosmia and PD with hyposomia groups was significantly less inhibited than that in the PD with normosmia and control groups [64.79 {Interquartile range (IQR): 59.96, 71.33}, 84.79 {IQR: 75.03, 90.63} versus 36.72 {IQR: 32.28, 48.33}, 42.15 {IQR: 34.60, 44.96}, respectively]. In PD subjects, the severity of olfactory dysfunction also showed a significant negative correlation with the SAI response (r=-0.829, p<0.001). CONCLUSIONS Considering that the SAI response partly reflects central cholinergic dysfunction and that our study shows a relationship between the SAI response and the severity of olfactory dysfunction in PD, our findings indicate that cholinergic dysfunction could possibly contribute to the pathogenesis of olfactory dysfunction in early PD. SIGNIFICANCE SAI could be a useful marker to detect severe olfactory dysfunction in PD.
Collapse
Affiliation(s)
- Eungseok Oh
- Department of Neurology, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jinse Park
- Department of Neurology, Inje University, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Sun Kim
- Department of Neurology, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea.
| |
Collapse
|
24
|
Simons JA. Swallowing Dysfunctions in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 134:1207-1238. [DOI: 10.1016/bs.irn.2017.05.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Mukherjee A, Biswas A, Das SK. Gut dysfunction in Parkinson's disease. World J Gastroenterol 2016; 22:5742-5752. [PMID: 27433087 PMCID: PMC4932209 DOI: 10.3748/wjg.v22.i25.5742] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/30/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required.
Collapse
|
26
|
PET/MRI of central nervous system: current status and future perspective. Eur Radiol 2016; 26:3534-41. [PMID: 26780640 DOI: 10.1007/s00330-015-4202-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/15/2015] [Accepted: 12/30/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Imaging plays an increasingly important role in the early diagnosis, prognosis prediction and therapy response evaluation of central nervous system (CNS) diseases. The newly emerging hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) can perform "one-stop-shop" evaluation, including anatomic, functional, biochemical and metabolic information, even at the molecular level, for personalised diagnoses and treatments of CNS diseases. However, there are still several problems to be resolved, such as appropriate PET detectors, attenuation correction and so on. This review will introduce the basic physical principles of PET/MRI and its potential clinical applications in the CNS. We also provide the future perspectives for this field. KEY POINTS • PET/MRI can simultaneously provide anatomic, functional, biochemical and metabolic information. • PET/MRI has promising potential in various central nervous system diseases. • Research on the future implementation of PET/MRI is challenging and encouraging.
Collapse
|