1
|
Šoštarić P, Matić M, Nemanić D, Lučev Vasić Ž, Cifrek M, Pirazzini M, Matak I. Beyond neuromuscular activity: botulinum toxin type A exerts direct central action on spinal control of movement. Eur J Pharmacol 2024; 962:176242. [PMID: 38048980 DOI: 10.1016/j.ejphar.2023.176242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Overt muscle activity and impaired spinal locomotor control hampering coordinated movement is a hallmark of spasticity and movement disorders like dystonia. While botulinum toxin A (BoNT-A) standard therapy alleviates mentioned symptoms presumably due to its peripheral neuromuscular actions alone, the aim of present study was to examine for the first time the toxin's trans-synaptic activity within central circuits that govern the skilled movement. The rat hindlimb motor pools were targeted by BoNT-A intrasciatic bilateral injection (2 U per nerve), while its trans-synaptic action on premotor inputs was blocked by intrathecal BoNT-A-neutralising antitoxin (5 i.u.). Effects of BoNT-A on coordinated and high intensity motor tasks (rotarod, beamwalk swimming), and localised muscle weakness (digit abduction, gait ability) were followed until their substantial recovery by day 56 post BoNT-A. Later, (day 62-77) the BoNT-A effects were examined in unilateral calf muscle spasm evoked by tetanus toxin (TeNT, 1.5 ng). In comparison to peripheral effect alone, combined peripheral and central trans-synaptic BoNT-A action induced a more prominent and longer impairment of different motor tasks, as well as the localised muscle weakness. After near-complete recovery of motor functions, the BoNT-A maintained the ability to reduce the experimental calf spasm evoked by tetanus toxin (TeNT 1.5 ng, day 62) without altering the monosynaptic reflex excitability. These results indicate that, in addition to muscle terminals, BoNT-A-mediated control of hyperactive muscle activity in movement disorders and spasticity may involve the spinal premotor inputs and central circuits participating in the skilled locomotor performance.
Collapse
Affiliation(s)
- Petra Šoštarić
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia
| | - Magdalena Matić
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia; Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dalia Nemanić
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10 000, Zagreb, Croatia
| | - Željka Lučev Vasić
- University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
| | - Mario Cifrek
- University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B 35131, Padova, Italy; Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Benavides J, Castro OE. Validation of a semiological maneuver for the evaluation of spastic dynamic clubfoot: an approach based on the judgment of experts in physical medicine and rehabilitation. Eur J Phys Rehabil Med 2022; 58:575-583. [PMID: 35191656 PMCID: PMC9980492 DOI: 10.23736/s1973-9087.22.07355-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The evaluation of spasticity of the plantar flexors in dynamic clubfoot is difficult due to the almost invariable concomitance of Achilles clonus, which is a semiological artifact. No description was found in the literature of a technique for inhibiting or reducing the discharge generated by Achilles clonus to allow a correct assessment of spasticity in this segment. AIM Validation of a semiological maneuver that reduces or eliminates Achilles clonus for the adequate evaluation of spastic dynamic clubfoot. DESIGN Multicenter cross-sectional study. SETTING The study was conducted by 12 experts in physical medicine and rehabilitation from various clinics and hospitals in Colombia. POPULATION Thirty-five adults with dynamic spastic clubfoot and Achilles clonus secondary to upper motor neuron syndrome who attended outpatient consultation at physical medicine and rehabilitation services in eight cities Colombia from August 2020 to February 2021. METHODS The usual method for examining spastic plantar flexors was compared to the proposed semiological maneuver to evaluate the proposed maneuver contributed to the reduction or elimination of Achilles clonus to allow a more accurate measure of spasticity in this segment. Four dimensions were evaluated by the experts: time required for application, simplicity, effectiveness and clinical utility. A cutoff point was established to identify whether the maneuver was unacceptable, acceptable or excellent. RESULTS The application of the maneuver was able to reduce or eliminate Achilles clonus as a masking sign of spasticity in the plantar flexors in 100% of the patients and was considered excellent in 77.1% of the cases for the four dimensions evaluated. A decrease in the degree of spasticity of the plantar flexors was observed when the maneuver was applied. CONCLUSIONS The proposed maneuver reduces or eliminates Achilles clonus, which could allow a more precise evaluation of spasticity in this segment. All of the experts recommended including the maneuver in routine examinations of this population. CLINICAL REHABILITATION IMPACT Applying the proposed maneuver could improve the selection of patients with spastic dynamic clubfoot who require specific treatment.
Collapse
Affiliation(s)
- Javier Benavides
- Department of Physical Medicine and Rehabilitation, University of Valle, Cali, Colombia -
| | - Oscar E Castro
- Department of Physical Medicine and Rehabilitation, University of Valle, Cali, Colombia
| |
Collapse
|
3
|
Matak I. Evidence for central antispastic effect of botulinum toxin type A. Br J Pharmacol 2019; 177:65-76. [PMID: 31444910 DOI: 10.1111/bph.14846] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Botulinum toxin type A (BoNT/A) injections into hyperactive muscles provide effective treatment for spasticity and dystonias, presumably due to its local effects on extrafusal and intrafusal motor fibres. A recent discovery of toxin's retrograde axonal transport to CNS might suggest additional action sites. However, in comparison to cholinergic peripheral terminals, functional consequences of BoNT/A direct central action on abnormally increased muscle tone are presently unknown. To address this question, the central effects of BoNT/A were assessed in experimental local spastic paralysis. EXPERIMENTAL APPROACH Local spastic paralysis was induced by injection of tetanus toxin (1.5 ng) into rat gastrocnemius. Subsequently, BoNT/A (5 U·kg-1 ) was applied i.m. into the spastic muscle or intraneurally (i.n.) into the sciatic nerve to mimic the action of axonally transported toxin. Functional role of BoNT/A transcytosis in spinal cord was evaluated by lumbar i.t. application of BoNT/A-neutralizing antitoxin. BoNT/A effects were studied by behavioural motor assessment and cleaved synaptosomal-associated protein 25 (SNAP-25) immunohistochemistry. KEY RESULTS Tetanus toxin evoked muscular spasm (sustained rigid hind paw extension and resistance to passive ankle flexion). Subsequent injections of BoNT/A, i.m. or i.n, reduced tetanus toxin-evoked spastic paralysis. Beneficial effects of i.n. BoNT/A and occurrence of cleaved SNAP-25 in ventral horn were prevented by i.t. antitoxin. CONCLUSIONS AND IMPLICATIONS Axonally transported BoNT/A relieves muscle hypertonia induced by tetanus toxin, following the trans-synaptic movement of BoNT/A in the CNS. These results suggest that such direct, centrally mediated reduction of abnormal muscle tone might contribute to the effectiveness of BoNT/A in spasticity and hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
4
|
Fonfria E, Maignel J, Lezmi S, Martin V, Splevins A, Shubber S, Kalinichev M, Foster K, Picaut P, Krupp J. The Expanding Therapeutic Utility of Botulinum Neurotoxins. Toxins (Basel) 2018; 10:E208. [PMID: 29783676 PMCID: PMC5983264 DOI: 10.3390/toxins10050208] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is a major therapeutic agent that is licensed in neurological indications, such as dystonia and spasticity. The BoNT family, which is produced in nature by clostridial bacteria, comprises several pharmacologically distinct proteins with distinct properties. In this review, we present an overview of the current therapeutic landscape and explore the diversity of BoNT proteins as future therapeutics. In recent years, novel indications have emerged in the fields of pain, migraine, overactive bladder, osteoarthritis, and wound healing. The study of biological effects distal to the injection site could provide future opportunities for disease-tailored BoNT therapies. However, there are some challenges in the pharmaceutical development of BoNTs, such as liquid and slow-release BoNT formulations; and, transdermal, transurothelial, and transepithelial delivery. Innovative approaches in the areas of formulation and delivery, together with highly sensitive analytical tools, will be key for the success of next generation BoNT clinical products.
Collapse
Affiliation(s)
- Elena Fonfria
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Jacquie Maignel
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Stephane Lezmi
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Vincent Martin
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Andrew Splevins
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Saif Shubber
- Ipsen Biopharm Ltd., Wrexham Industrial Estate, 9 Ash Road, Wrexham LL13 9UF, UK.
| | | | - Keith Foster
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Philippe Picaut
- Ipsen Bioscience, 650 Kendall Street, Cambridge, MA 02142, USA.
| | - Johannes Krupp
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| |
Collapse
|
5
|
Relja M, Miletić V. When movement disorders hurt: Addressing pain in hyperkinetic disorders. Parkinsonism Relat Disord 2017; 44:110-113. [PMID: 29111426 DOI: 10.1016/j.parkreldis.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Abstract
Pain is an important nonmotor symptom in movement disorders. Dystonia is a hyperkinetic movement disorder characterized by involuntary, sustained or intermittent muscle contractions causing abnormal movements, postures or both. Contrary to common views the nonmotor symptoms are present in dystonia patients. Pain is a prevailing feature of cervical dystonia (CD), the most common form of focal dystonia. The mechanism of pain in CD remains mostly unknown, but there are growing evidence that it could not be only the consequence of muscle hyperactivity. We have shown that botulinum toxin (BoNT) produced pain relief before muscle relaxation and that effect on pain relief lasted longer than the effect on motor improvement. More and more data suggest that pain relief could be attributed to the direct effect of BoNT type A on central nervous system. Pain, depression, and anxiety have been shown to be significant determinants of QoL in focal dystonia patients. Routine clinical examination in patients with dystonia should include evaluation of motor as well as non-motor symptoms. Selective rating assessment should be used in clinical practice to quantify pain. Specific assessment of pain is important to determine the effect of BoNT as the most effective treatment in focal dystonia.
Collapse
Affiliation(s)
- Maja Relja
- Referral Center for Movement Disorders, Department of Neurology, University Hospital Center Zagreb, Medical School University of Zagreb, 10000 Zagreb, Croatia.
| | - Vladimir Miletić
- Referral Center for Movement Disorders, Department of Neurology, University Hospital Center Zagreb, Medical School University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev 2017; 69:200-235. [PMID: 28356439 PMCID: PMC5394922 DOI: 10.1124/pr.116.012658] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects. Novel BoNTs are being discovered owing to next generation sequencing, but their biologic and pharmacological properties remain largely unknown. The molecular structure of the large protein complexes that the toxin forms with accessory proteins, which are included in some BoNT type A1 and B1 pharmacological preparations, have been determined. By far the largest effort has been dedicated to the testing and validation of BoNTs as therapeutic agents in an ever increasing number of applications, including pain therapy. BoNT type A1 has been also exploited in a variety of cosmetic treatments, alone or in combination with other agents, and this specific market has reached the size of the one dedicated to the treatment of medical syndromes. The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies. Moreover, the wide array of BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed with specific properties suggest novel uses in therapeutics with increasing disease/symptom specifity. These recent developments are reviewed here to provide an updated picture of the biologic mechanism of action of BoNTs, of their increasing use in pharmacology and in cosmetics, and of their toxicology.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Roberto Eleopra
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| |
Collapse
|