1
|
Chen B, Li L, Bai L, Zhao M, Chang Y, Gao S. Characteristics of cerebral glucose metabolism in patients with cognitive impairment in multiple system atrophy. Front Aging Neurosci 2025; 17:1520515. [PMID: 40110479 PMCID: PMC11920113 DOI: 10.3389/fnagi.2025.1520515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Objective We aimed to conduct 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) to investigate the metabolic changes in brain regions associated with cognitive decline in patients with multiple system atrophy (MSA) and to assess the diagnostic efficacy of 18F-FDG PET imaging for evaluating the cognitive status of MSA patients. Methods This study included 44 MSA patients (MSA group) and 30 healthy controls (HC group) who underwent brain 18F-FDG PET imaging. All patients were subjected to the Mini-Mental State Examination and categorized into the MSA with normal cognition (MSA-NC) and MSA with cognitive impairment (MSA-CI) groups. Statistical parametric mapping (version 12) was used to analyze PET images and compare the differences in brain metabolism between the MSA and HC groups. The PET images of MSA-CI and MSA-NC patients were compared to analyze the metabolic characteristics, and the regional cerebral metabolic rate of glucose (rCMRglc) was calculated for different brain regions. Receiver operating characteristic (ROC) curves were used to analyze the ability of the rCMRglc of different brain regions to assess the cognitive status of MSA patients. Results Compared with the HC group, the MSA group showed diffuse reductions in glucose metabolism in the cerebellar regions, decreased metabolism in specific areas of the left inferior parietal lobule, right putamen, and left middle temporal gyrus, and increased metabolism in the left postcentral gyrus, right postcentral gyrus, left precuneus. Compared with the MSA-NC group, the MSA-CI group exhibited decreased metabolism in the right superior frontal gyrus and right superior parietal lobule. The rCMRglc value of the right superior frontal gyrus (Montreal Neurological Institute coordinates: 18, -6, 70) showed better diagnostic efficacy for identifying MSA-CI, with an area under the ROC curve of 0.829 (95%CI = 0.696-0.963), sensitivity of 84.6% (95%CI = 66.5-93.9%), and specificity of 83.3% (95%CI = 60.8-94.2%). Conclusion Compared with MSA-NC patients, the MSA-CI patients show decreased metabolism in the right superior frontal gyrus and right superior parietal lobule. The rCMRglc value of the right superior frontal gyrus may be a potential molecular imaging biomarker for diagnosing MSA-CI.
Collapse
Affiliation(s)
- Bin Chen
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Lingchao Li
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Lin Bai
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Min Zhao
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ying Chang
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Shi Gao
- China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
2
|
Pasquini J, Sigurdsson HP, Firbank M, Best L, Foster V, Galley D, Maxwell R, Silani V, Ceravolo R, Petrides G, Brooks DJ, Pavese N. Locus coeruleus neuromelanin, cognitive dysfunction, and brain metabolism in multiple system atrophy. J Neurol 2025; 272:195. [PMID: 39932591 PMCID: PMC11814031 DOI: 10.1007/s00415-025-12932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Cognitive dysfunction is increasingly recognized in multiple system atrophy (MSA). Locus coeruleus (LC) integrity is associated with cognitive performance both in healthy controls (HC) and neurodegenerative conditions such as Parkinson's disease (PD). Furthermore, cortical glucose hypometabolism is associated with impaired cognitive performance in MSA. However, knowledge about LC sub-regional degeneration and its association with cognitive dysfunction and cortical glucose metabolism is lacking. OBJECTIVE To investigate LC sub-regional involvement and its association with cognitive impairment and brain metabolism in MSA. METHODS Eleven MSA, eighteen PD, and eighteen HC participants were included in the study. Neuromelanin-sensitive MRI was used to determine rostral, middle and caudal LC neuromelanin signals. Brain glucose metabolism was investigated with [18F]Fluorodeoxyglucose PET (FDG-PET). The Montreal Cognitive Assessment (MoCA) was used as a measure of global cognition. RESULTS Middle LC neuromelanin signal was significantly reduced in MSA [t(43) = 3.70, corrected-p = 0.004] and PD [t(43) = 2.63, corrected-p = 0.041] compared to HC, while caudal LC was only reduced in MSA [t(43) = 2.82, corrected-p = 0.030]. In MSA, decreased rostral LC neuromelanin was associated with lower MoCA scores (ρ = 0.760, p = 0.006) which, in turn, were associated with lower frontal cortex glucose metabolism. An association between rostral LC neuromelanin signal and frontal cortex glucose metabolism was found in exploratory analyses. CONCLUSION Loss of LC neuromelanin signal was found in MSA, the middle and caudal parts being targeted. Rostral LC neuromelanin signal loss was associated with both frontal cortex hypometabolism and lower MoCA scores. This pathophysiological link should be further investigated as the noradrenergic system transmission is amenable to pharmacological manipulation.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Hilmar P Sigurdsson
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
| | - Michael Firbank
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
| | - Laura Best
- Regional Neurosciences Centre, Royal Victoria Hospital, Belfast, UK
| | - Victoria Foster
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
| | - Debra Galley
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
| | - Ross Maxwell
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Neurodegenerative Diseases Center, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - George Petrides
- Nuclear Medicine Department, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - David J Brooks
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
- Department of Nuclear Medicine and PET Centre, Institute of Clinical Medicine, Aarhus University, 8200, Aarhus, Denmark
| | - Nicola Pavese
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK.
- Department of Nuclear Medicine and PET Centre, Institute of Clinical Medicine, Aarhus University, 8200, Aarhus, Denmark.
| |
Collapse
|
3
|
Jellinger KA. The Spectrum of Cognitive Impairment in Atypical Parkinsonism Syndromes: A Comprehensive Review of Current Understanding and Research. Diseases 2025; 13:39. [PMID: 39997046 PMCID: PMC11854393 DOI: 10.3390/diseases13020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) are the most common atypical parkinsonism (AP) syndromes. They are clinically characterized by varying combinations of levodopa-poorly responsive parkinsonism, motor, cerebellar, and other signs. They are associated with a wide spectrum of non-motor symptoms, including prominent cognitive impairment such as global cognitive deficits, memory, executive, attentional, visuospatial, language, and non-verbal reasoning dysfunctions. Within the APs, their cognitive functioning is distributed along a continuum from MSA with the least impaired cognitive profile (similar to Parkinson's disease) to PSP and CBD with the greatest decline in global cognitive and executive domains. Although their pathological hallmarks are different-MSA α-synucleinopathy, CBD, and PSP 4-repeat tauopathies-cognitive dysfunctions in APs show both overlaps and dissimilarities. They are often preceding and anticipate motor dysfunctions, finally contributing to reduced quality of life of patients and caregivers. The present paper will review the current evidence of the prevalence and type of cognitive impairment in these AP syndromes, their neuroimaging, pathogenic backgrounds, and current management options based on extensive literature research. Cognitive dysfunctions in APs are due to disruption of prefronto-subcortical and striato-thalamo-cortical circuitries and multiple essential brain networks. This supports the concept that they are brain network disorders due to complex pathogenic mechanisms related to the basic proteinopathies that are still poorly understood. Therefore, the pathophysiology and pathogenesis of cognitive impairment in APs deserve further elucidation as a basis for early diagnosis and adequate treatment of these debilitating comorbidities.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
4
|
Xian M, Li J, Liu T, Hou K, Sun L, Wei J. β-Synuclein Intermediates α-Synuclein Neurotoxicity in Parkinson's Disease. ACS Chem Neurosci 2024; 15:2445-2453. [PMID: 38905183 DOI: 10.1021/acschemneuro.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease in the world, and synuclein is closely related to the onset and progression of PD. Synuclein is considered a therapeutic target for PD. Recent studies have found that abnormal aggregation of α-synuclein (α-Syn) in the brains of PD patients leads to mitochondrial dysfunction and neuroinflammation. Research in the field of neuroscience has confirmed that β-synuclein (β-Syn) also plays a role in Parkinson's disease. However, there has been little research on the role mechanisms and interactions between β-Syn and α-Syn in PD. Therefore, the purpose of this study is to clarify the relationship between α-Syn, β-Syn, and PD and to explore the roles and interactions of β-Syn and α-Syn in PD.
Collapse
Affiliation(s)
- Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jingwen Li
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Kaiying Hou
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| |
Collapse
|
5
|
Cuoco S, Ponticorvo S, Bisogno R, Manara R, Esposito F, Di Salle G, Di Salle F, Amboni M, Erro R, Picillo M, Barone P, Pellecchia MT. Magnetic Resonance T1w/T2w Ratio in the Putamen and Cerebellum as a Marker of Cognitive Impairment in MSA: a Longitudinal Study. CEREBELLUM (LONDON, ENGLAND) 2023; 22:810-817. [PMID: 35982370 PMCID: PMC10485110 DOI: 10.1007/s12311-022-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The exact pathophysiology of cognitive impairment in multiple system atrophy (MSA) is unclear. In our longitudinal study, we aimed to analyze (I) the relationships between cognitive functions and some subcortical structures, such as putamen and cerebellum assessed by voxel-based morphometry (VBM) and T1-weighted/T2-weighted (T1w/T2w) ratio, and (II) the neuroimaging predictors of the progression of cognitive deficits. Twenty-six patients with MSA underwent a comprehensive neuropsychological battery, motor examination, and brain MRI at baseline (T0) and 1-year follow-up (T1). Patients were then divided according to cognitive status into MSA with normal cognition (MSA-NC) and MSA with mild cognitive impairment (MCI). At T1, we divided the sample according to worsening/non worsening of cognitive status compared to baseline evaluation. Logistic regression analysis showed that age (β = - 9.45, p = .02) and T1w/T2w value in the left putamen (β = 230.64, p = .01) were significant predictors of global cognitive status at T0, explaining 65% of the variance. Logistic regression analysis showed that ∆-values of WM density in the cerebellum/brainstem (β = 2188.70, p = .02) significantly predicted cognitive worsening at T1, explaining 64% of the variance. Our results suggest a role for the putamen and cerebellum in the cognitive changes of MSA, probably due to their connections with the cortex. The putaminal T1w/T2w ratio may deserve further studies as a marker of cognitive impairment in MSA.
Collapse
Affiliation(s)
- Sofia Cuoco
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, 84131, Salerno, Italy
| | - Sara Ponticorvo
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, 84131, Salerno, Italy
| | - Rossella Bisogno
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, 84131, Salerno, Italy
| | - Renzo Manara
- Neuroradiology Unit, Department of Neurosciences, University of Padua, 35128, Padua, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli, Napoli, Italy
| | - Gianfranco Di Salle
- Scuola Superiore Di Studi Universitari E Perfezionamento Sant'Anna, Classe Di Scienze Sperimentali, Pisa, Italy
| | - Francesco Di Salle
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, 84131, Salerno, Italy
| | - Marianna Amboni
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, 84131, Salerno, Italy
| | - Roberto Erro
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, 84131, Salerno, Italy
| | - Marina Picillo
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, 84131, Salerno, Italy
| | - Paolo Barone
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, 84131, Salerno, Italy
| | - Maria Teresa Pellecchia
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, 84131, Salerno, Italy.
| |
Collapse
|
6
|
Jellinger KA. Mild cognitive impairment in multiple system atrophy: a brain network disorder. J Neural Transm (Vienna) 2023; 130:1231-1240. [PMID: 37581647 DOI: 10.1007/s00702-023-02682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Cognitive impairment (CI), previously considered as a non-supporting feature of multiple system atrophy (MSA), according to the second consensus criteria, is not uncommon in this neurodegenerative disorder that is clinically characterized by a variable combination of autonomic failure, levodopa-unresponsive parkinsonism, motor and cerebellar signs. Mild cognitive impairment (MCI), a risk factor for dementia, has been reported in up to 44% of MSA patients, with predominant impairment of executive functions/attention, visuospatial and verbal deficits, and a variety of non-cognitive and neuropsychiatric symptoms. Despite changing concept of CI in this synucleinopathy, the underlying pathophysiological mechanisms remain controversial. Recent neuroimaging studies revealed volume reduction in the left temporal gyrus, and in the dopaminergic nucleus accumbens, while other morphometric studies did not find any gray matter atrophy, in particular in the frontal cortex. Functional analyses detected decreased functional connectivity in the left parietal lobe, bilateral cuneus, left precuneus, limbic structures, and cerebello-cerebral circuit, suggesting that structural and functional changes in the subcortical limbic structures and disrupted cerebello-cerebral networks may be associated with early cognitive decline in MSA. Whereas moderate to severe CI in MSA in addition to prefrontal-striatal degeneration is frequently associated with cortical Alzheimer and Lewy co-pathologies, neuropathological studies of the MCI stage of MSA are unfortunately not available. In view of the limited structural and functional findings in MSA cases with MCI, further neuroimaging and neuropathological studies are warranted in order to better elucidate its pathophysiological mechanisms and to develop validated biomarkers as basis for early diagnosis and future adequate treatment modalities in order to prevent progression of this debilitating disorder.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
7
|
Ellis EG, Joutsa J, Morrison-Ham J, Younger EFP, Saward JB, Caeyenberghs K, Corp DT. Large-scale activation likelihood estimation meta-analysis of parkinsonian disorders. Brain Commun 2023; 5:fcad172. [PMID: 37324240 PMCID: PMC10265724 DOI: 10.1093/braincomms/fcad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Parkinsonism is a feature of several neurodegenerative disorders, including Parkinson's disease, progressive supranuclear palsy, corticobasal syndrome and multiple system atrophy. Neuroimaging studies have yielded insights into parkinsonian disorders; however, due to variability in results, the brain regions consistently implicated in these disorders remain to be characterized. The aim of this meta-analysis was to identify consistent brain abnormalities in individual parkinsonian disorders (Parkinson's disease, progressive supranuclear palsy, corticobasal syndrome and multiple system atrophy) and to investigate any shared abnormalities across disorders. A total of 44 591 studies were systematically screened following searches of two databases. A series of whole-brain activation likelihood estimation meta-analyses were performed on 132 neuroimaging studies (69 Parkinson's disease; 23 progressive supranuclear palsy; 17 corticobasal syndrome; and 23 multiple system atrophy) utilizing anatomical MRI, perfusion or metabolism PET and single-photon emission computed tomography. Meta-analyses were performed in each parkinsonian disorder within each imaging modality, as well as across all included disorders. Results in progressive supranuclear palsy and multiple system atrophy aligned with current imaging markers for diagnosis, encompassing the midbrain, and brainstem and putamen, respectively. PET imaging studies of patients with Parkinson's disease most consistently reported abnormality of the middle temporal gyrus. No significant clusters were identified in corticobasal syndrome. When examining abnormalities shared across all four disorders, the caudate was consistently reported in MRI studies, whilst the thalamus, inferior frontal gyrus and middle temporal gyri were commonly implicated by PET. To our knowledge, this is the largest meta-analysis of neuroimaging studies in parkinsonian disorders and the first to characterize brain regions implicated across parkinsonian disorders.
Collapse
Affiliation(s)
- Elizabeth G Ellis
- Correspondence to: Elizabeth G. Ellis Cognitive Neuroscience Unit, School of Psychology Deakin University, 221 Burwood Highway Burwood, VIC 3125, Australia E-mail:
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Department of Neurology, Psychiatry, and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku 20520, Finland
- Turku PET Centre, Neurocenter, Turku University Hospital, Turku 20520, Finland
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC 3220, Australia
| | - Ellen F P Younger
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC 3220, Australia
| | - Jacqueline B Saward
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC 3220, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC 3220, Australia
| | - Daniel T Corp
- Correspondence may also be addressed to: Daniel T. Corp Cognitive Neuroscience Unit, School of Psychology Deakin University, 221 Burwood Highway Burwood, VIC 3125, Australia E-mail:
| |
Collapse
|
8
|
Jellinger KA. Morphological differences between the two major subtypes of multiple system atrophy with cognitive impairment. Parkinsonism Relat Disord 2023; 107:105273. [PMID: 36603328 DOI: 10.1016/j.parkreldis.2022.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To compare the neuropathology between two types of multiple system atrophy - parkinsonism-predominant (MSA-P) and cerebellar ataxia-predominant (MSA-C) with cognitive impairment. MATERIAL & METHODS 35 cases of MSA-P (mean age at death 60.5 ± 7.8 years) and 15 cases of MSA-C (mean age at death 61.3 ± 6.8 years), 35.% of which associated with mild to moderate cognitive impairment and one with severe dementia, were examined neuropathologically with semiquantitative evaluation of both α-synuclein and Alzheimer pathologies, including cerebral amyloid angiopathy (CAA) and other co-pathologies. RESULTS While the mean age at death of both MSA subgroups was similar, the age at onset and duration of disease were slightly higher in the MSA-C group. In line with the classification, the αSyn pathology glial and neuronal inclusions in both the cortex and brainstem were significantly higher in the MSA-P group. With regard to the Alzheimer disease pathology, tau load in cases with mild to moderate cognitive impairment was slightly but not significantly higher in the MSA-P group, one with severe dementia showing fully developed Alzheimer co-pathology, while the amyloid-β (Aβ) load including the CAA was higher in the MSA-C group. The presence of Lewy co-pathology in this series (20%), being similar to that of other MSA cohorts, was more frequent in MSA cases with mild to severe cognitive impairment, but did not differ between the two subgroups and seems not essentially important for MCI in MSA. CONCLUSIONS In agreement with previous clinical studies that reported more severe cognitive dysfunction in patients with MSA-P, the present neuropathological study showed increased tau pathology in MSA-P and one with severe Alzheimer co-pathology, but only slightly increased amyloid pathology in the MSA-C group. Lewy co-pathology was more frequent in MSA-P cases with cognitive decline. In view of the limited data about the pathobiological basis of cognitive impairment in MSA, further studies to elucidate the differences between the two phenotypes are urgently needed.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150, Vienna, Austria.
| |
Collapse
|
9
|
Structural and metabolic correlates of neuropsychological profiles in multiple system atrophy and Parkinson's disease. Parkinsonism Relat Disord 2023; 107:105277. [PMID: 36621156 DOI: 10.1016/j.parkreldis.2022.105277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Despite increased recognition of cognitive impairment in Multiple System Atrophy (MSA), its neuroanatomical correlates are not well defined. We aimed to explore cognitive profiles in MSA with predominant parkinsonism (MSA-P) and Parkinson's disease (PD) and their relationship to frontostriatal structural and metabolic changes. METHODS Detailed clinical and neuropsychological evaluation was performed together with diffusion tensor imaging (DTI) and [18F]-fluoro-deoxyglucose positron emission tomography ([18F]-FDG-PET) in patients with MSA-P (n = 11) and PD (n = 11). We compared clinical and neuropsychological data to healthy controls (n = 9) and correlated neuropsychological data with imaging findings in MSA-P and PD. RESULTS Patients with MSA-P showed deficits in executive function (Trail Making Test B-A) and scored higher in measures of depression and anxiety compared to those with PD and healthy controls. Widespread frontostriatal white matter tract reduction in fractional anisotropy was seen in MSA-P and PD compared to an imaging control group. Stroop Test interference performance correlated with [18F]-FDG uptake in the bilateral dorsolateral prefrontal cortex (DLPFC) and with white matter integrity between the striatum and left inferior frontal gyrus (IFG) in PD. Trail Making Test performance correlated with corticostriatal white matter integrity along tracts from the bilateral IFG in MSA-P and from the right DLPFC in both groups. CONCLUSION Executive dysfunction was more prominent in patients with MSA-P compared to PD. DLPFC metabolism and frontostriatal white matter integrity seem to be a driver of executive function in PD, whereas alterations in corticostriatal white matter integrity may contribute more to executive dysfunction in MSA-P.
Collapse
|
10
|
Cui Y, Cao S, Li F, Feng T. Prevalence and Clinical Characteristics of Dementia and Cognitive Impairment in Multiple System Atrophy: A Systematic Review and Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2383-2395. [PMID: 36336940 DOI: 10.3233/jpd-223444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cognitive impairment is a clinical feature of multiple system atrophy (MSA). However, the prevalence and factors influencing the prevalence of cognitive impairment and dementia in MSA patients remain unclear. OBJECTIVE We aim to provide an estimate of the prevalence of cognitive impairment and dementia in patients with MSA and to evaluate the possible effect of demographic, clinical and methodological factors on the prevalence. METHODS We systematically searched the PubMed, Embase, and Web of science databases to identify studies that report the prevalence of cognitive impairment or dementia in MSA published up to February 2022. We computed the estimates of the pooled prevalence using random-effects models. Heterogeneity was investigated by subgroup analyses and meta-regression. Differences between MSA patients with and without cognitive impairment in demographic and clinical features were explored. RESULTS A total of 23 studies comprising 2064 MSA patients were included in meta-analysis. The pooled prevalence of cognitive impairment in MSA patients was 37% (95% CI: 29% -45%), the prevalence of dementia was 11% (95% CI: 7% -15%). The subgroup analyses showed the prevalence of dementia in pathologically-confirmed MSA was 7% (95% CI: 0% -12%), in clinically diagnosed MSA was 14% (95% CI: 10% -18%). Cognitive impairment in MSA patients was associated with older age, lower education, longer disease duration and more severe motor symptoms. CONCLUSION Cognitive impairment is a common non-motor symptom in MSA. Dementia can develop in a few patients with MSA as well, but usually in the late stage.
Collapse
Affiliation(s)
- Yusha Cui
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuangshuang Cao
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Fangfei Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
11
|
Li Y, Liu H, Yu H, Yang H, Guo M, Cao C, Pang H, Liu Y, Cao K, Fan G. Alterations of voxel-wise spontaneous activity and corresponding brain functional networks in multiple system atrophy patients with mild cognitive impairment. Hum Brain Mapp 2022; 44:403-417. [PMID: 36073537 PMCID: PMC9842910 DOI: 10.1002/hbm.26058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023] Open
Abstract
Emerging evidence has indicated that cognitive impairment is an underrecognized feature of multiple system atrophy (MSA). Mild cognitive impairment (MCI) is related to a high risk of dementia. However, the mechanism underlying MCI in MSA remains controversial. In this study, we conducted the amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) analyses to detect the characteristics of local neural activity and corresponding network alterations in MSA patients with MCI (MSA-MCI). We enrolled 80 probable MSA patients classified as cognitively normal (MSA-NC, n = 36) and MSA-MCI (n = 44) and 40 healthy controls. Compared with MSA-NC, MSA-MCI exhibited decreased ALFF in the right dorsal lateral prefrontal cortex (RDLPFC) and increased ALFF in the right cerebellar lobule IX and lobule IV-V. In the secondary FC analyses, decreased FC in the left inferior parietal lobe (IPL) was observed when we set the RDLPFC as the seed region. Decreased FC in the bilateral cuneus, left precuneus, and left IPL and increased FC in the right middle temporal gyrus were shown when we set the right cerebellar lobule IX as the seed region. Furthermore, FC of DLPFC-IPL and cerebello-cerebral circuit, as well as ALFF alterations, were significantly correlated with Montreal Cognitive Assessment scores in MSA patients. We also employed whole-brain voxel-based morphometry analysis, but no gray matter atrophy was detected between the patient subgroups. Our findings indicate that altered spontaneous activity in the DLPFC and the cerebellum and disrupted DLPFC-IPL, cerebello-cerebral networks are possible biomarkers of early cognitive decline in MSA patients.
Collapse
Affiliation(s)
- Yingmei Li
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Hu Liu
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Hongmei Yu
- Department of Neurology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Huaguang Yang
- Department of Radiology, Renmin HospitalWuhan UniversityWuhanHubeiChina
| | - Miaoran Guo
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Chenghao Cao
- Department of Radiology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Huize Pang
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Yu Liu
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Kaiqiang Cao
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Guoguang Fan
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| |
Collapse
|
12
|
Sun L, Hui L, Li Y, Chen X, Liu R, Ma J. Pathogenesis and research progress in leukoaraiosis. Front Hum Neurosci 2022; 16:902731. [PMID: 36061509 PMCID: PMC9437627 DOI: 10.3389/fnhum.2022.902731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Leukoaraiosis is a common imaging marker of cerebral small vessel disease. In recent years, with the continuous advances in brain imaging technology, the detection rate of leukoaraiosis is higher and its clinical subtypes are gradually gaining attention. Although leukoaraiosis has long been considered an incidental finding with no therapeutic necessity, there is now growing evidence linking it to, among other things, cognitive impairment and a high risk of death after stroke. Due to different research methods, some of the findings are inconsistent and even contradictory. Therefore, a comprehensive and in-depth study of risk factors for leukoaraiosis is of great clinical significance. In this review, we summarize the literature on leukoaraiosis in recent years with the aim of elucidating the disease in terms of various aspects (including pathogenesis, imaging features, and clinical features, etc.).
Collapse
Affiliation(s)
- Lingqi Sun
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Lin Hui
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Li
- Department of Ultrasound Medicine, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Xian Chen
- Department of Neurology, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Rong Liu
- Department of Neurology, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Ji Ma
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Lazzeri G, Franco G, Difonzo T, Carandina A, Gramegna C, Vergari M, Arienti F, Naci A, Scatà C, Monfrini E, Dias Rodrigues G, Montano N, Comi GP, Saetti MC, Tobaldini E, Di Fonzo A. Cognitive and Autonomic Dysfunction in Multiple System Atrophy Type P and C: A Comparative Study. Front Neurol 2022; 13:912820. [PMID: 35785342 PMCID: PMC9243310 DOI: 10.3389/fneur.2022.912820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple System Atrophy (MSA) is a rare neurodegenerative disease, clinically defined by a combination of autonomic dysfunction and motor involvement, that may be predominantly extrapyramidal (MSA-P) or cerebellar (MSA-C). Although dementia is generally considered a red flag against the clinical diagnosis of MSA, in the last decade the evidence of cognitive impairment in MSA patients has been growing. Cognitive dysfunction appears to involve mainly, but not exclusively, executive functions, and may have different characteristics and progression in the two subtypes of the disease (i.e., MSA-P and MSA-C). Despite continued efforts, combining in-vivo imaging studies as well as pathological studies, the physiopathological bases of cognitive involvement in MSA are still unclear. In this view, the possible link between cardiovascular autonomic impairment and decreased cognitive performance, extensively investigated in PD, needs to be clarified as well. In the present study, we evaluated a cohort of 20 MSA patients (9 MSA-P, 11 MSA-C) by means of a neuropsychological battery, hemodynamic assessment (heart rate and arterial blood pressure) during rest and active standing and bedside autonomic function tests assessed by heart rate variability (HRV) parameters and sympathetic skin response (SSR) in the same experimental session. Overall, global cognitive functioning, as indicated by the MoCA score, was preserved in most patients. However, short- and long-term memory and attentional and frontal-executive functions were moderately impaired. When comparing MSA-P and MSA-C, the latter obtained lower scores in tests of executive functions and verbal memory. Conversely, no statistically significant difference in cardiovascular autonomic parameters was identified between MSA-P and MSA-C patients. In conclusion, moderate cognitive deficits, involving executive functions and memory, are present in MSA, particularly in MSA-C patients. In addition, our findings do not support the role of dysautonomia as a major driver of cognitive differences between MSA-P and MSA-C.
Collapse
Affiliation(s)
- Giulia Lazzeri
- Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Franco
- Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Teresa Difonzo
- Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelica Carandina
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Gramegna
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maurizio Vergari
- Neurophysiology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Arienti
- Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Anisa Naci
- Neurophysiology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Costanza Scatà
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of General Psychology, University of Padua, Padua, Italy
| | - Edoardo Monfrini
- Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giacomo P. Comi
- Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Maria Cristina Saetti
- Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- *Correspondence: Alessio Di Fonzo
| |
Collapse
|
14
|
Shen C, Chen QS, Zuo CT, Liu FT, Wang J. The Frontal and Cerebellar Metabolism Related to Cognitive Dysfunction in Multiple System Atrophy. Front Aging Neurosci 2022; 14:788166. [PMID: 35221987 PMCID: PMC8871713 DOI: 10.3389/fnagi.2022.788166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
Background Cognitive dysfunctions have been reported in multiple system atrophy (MSA). However the underlying mechanisms remain to be elucidated. This study aimed to explore the possible cerebral metabolism associated with domain-specific cognitive performances in MSA. Methods A total of 84 patients were diagnosed as probable or possible MSA, comprised of 27 patients as MSA with predominant parkinsonism (MSA-P) and 57 patients as MSA with predominant cerebellar ataxia (MSA-C). The comprehensive neuropsychological tests and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging were performed. Z-score was calculated to non-dimensionalize and unify indicators of different tests in the domains of executive function, attention, language, memory, and visuospatial function. Correlations between specific Z-score and cerebral 18F-FDG uptake were analyzed using statistical parametric mapping. The cognition-related metabolic differences between patients with MSA-P and MSA-C were analyzed using the post-hoc test. Results Z-scores of the domains including attention, executive function, and language correlated positively with the metabolism in the superior/inferior frontal gyrus and cerebellum, but negatively with that in the insula and fusiform gyrus (p < 0.001). No significant differences in neuropsychological performances and frontal metabolism were found between patients with MSA-P and MSA-C. Only lower metabolism in the cerebellum was observed in MSA-C. Conclusion Metabolic changes in the frontal lobe and cerebellum may participate in the cognitive impairments of patients with MSA. Nevertheless, cognitive and corresponding metabolic differences between the two subtypes of MSA still need more exploration.
Collapse
Affiliation(s)
- Cong Shen
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi-Si Chen
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Tao Zuo
- Positron Emission Tomography (PET) Center at Huashan Hospital, Institute of Functional and Molecular Medical Imaging, Human Phenome Institute, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Feng-Tao Liu,
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
- Jian Wang,
| |
Collapse
|
15
|
Nasri A, Sghaier I, Gharbi A, Mrabet S, Ben Djebara M, Gargouri A, Kacem I, Gouider R. Role of Apolipoprotein E in the Clinical Profile of Atypical Parkinsonian Syndromes. Alzheimer Dis Assoc Disord 2022; 36:36-43. [PMID: 35001031 DOI: 10.1097/wad.0000000000000479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Atypical Parkinsonian syndromes (APS) encompass a spectrum of neurodegenerative diseases including dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and corticobasal syndrome (CBS). The effects of the Apolipoprotein E (APOE) gene on APS clinical features are controversial and understudied in several populations. We aimed to explore the influence of APOE genotype on clinical features in an APS Tunisian cohort. METHODS We included clinically diagnosed APS patients genotyped for APOE, and analyzed the clinical and APOE genotype associations. RESULTS A total of 328 APS patients were included, comprising 184 DLB, 58 PSP, 49 MSA, and 37 CBS. Significant differences in initial Mini-Mental State Examination and Frontal Assessment Battery scores according to APOE genotypes (P=0.05 and 0.0048) were found. Executive dysfunction (P=0.026) disorientation (P=0.025), and hallucinations (P<0.001) were more pronounced among APOE-ɛ4 carriers particularly in DLB. Memory disorders were also correlated to APOE-ɛ4 allele (P=0.048) and were more frequent among DLB and PSP carriers. Depression was associated to APOE-ε4 (P=0.042), more markedly in APOE-ε4-CBS and MSA carriers. CONCLUSIONS Our findings suggested a role of APOE-ε4 in defining a more altered cognitive phenotype with variable degrees across subgroups in APS patients, especially in DLB carriers. This effect mainly concerned executive, memory and orientation functions as well as hallucinations.
Collapse
Affiliation(s)
- Amina Nasri
- Department of Neurology, LR18SP03, Clinical Investigation Centre "Neurosciences and Mental Health", Razi University Hospital
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ikram Sghaier
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Alya Gharbi
- Department of Neurology, LR18SP03, Clinical Investigation Centre "Neurosciences and Mental Health", Razi University Hospital
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Saloua Mrabet
- Department of Neurology, LR18SP03, Clinical Investigation Centre "Neurosciences and Mental Health", Razi University Hospital
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mouna Ben Djebara
- Department of Neurology, LR18SP03, Clinical Investigation Centre "Neurosciences and Mental Health", Razi University Hospital
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amina Gargouri
- Department of Neurology, LR18SP03, Clinical Investigation Centre "Neurosciences and Mental Health", Razi University Hospital
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imen Kacem
- Department of Neurology, LR18SP03, Clinical Investigation Centre "Neurosciences and Mental Health", Razi University Hospital
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Riadh Gouider
- Department of Neurology, LR18SP03, Clinical Investigation Centre "Neurosciences and Mental Health", Razi University Hospital
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
16
|
Zhang L, Hou Y, Cao B, Wei QQ, Ou R, Liu K, Lin J, Yang T, Xiao Y, Zhao B, Shang H. Vascular Risk Factors and Cognition in Multiple System Atrophy. Front Neurosci 2021; 15:749949. [PMID: 34764851 PMCID: PMC8576549 DOI: 10.3389/fnins.2021.749949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: Vascular risk factors have been reported to be associated with cognitive impairment (CI) in the general population, but their role on CI in multiple system atrophy (MSA) is unclear. This study aimed to explore the relationship between vascular risk factors and CI in patients with MSA. Methods: The clinical data and vascular risk factors were collected. The Montreal Cognitive Assessment tool was used to test the cognitive function of patients with MSA. Binary logistic regression was used to analyze the correlation between vascular risk factors and CI. Results: A total of 658 patients with MSA with a mean disease duration of 2.55 ± 1.47 years were enrolled. In MSA patients, hypertension was recorded in 20.2%, diabetes mellitus in 10.3%, hyperlipidemia in 10.2%, smoking in 41.2%, drinking in 34.8%, and obesity in 9.6%. The prevalence of CI in patients with MSA, MSA with predominant parkinsonism (MSA-P), and MSA with predominant cerebellar ataxia (MSA-C) was 45.0, 45.1, and 44.9%, respectively. In the binary logistic regression model, patients with more than one vascular risk factors were significantly more likely to have CI in MSA (OR = 4.298, 95% CI 1.456-12.691, P = 0.008) and MSA-P (OR = 6.952, 95% CI 1.390-34.774, P = 0.018), after adjusting for age, sex, educational years, disease duration, and total Unified multiple system atrophy rating scale scores. Conclusion: Multiple vascular risk factors had a cumulative impact on CI in MSA. Therefore, the comprehensive management of vascular risk factors in MSA should not be neglected.
Collapse
Affiliation(s)
- Lingyu Zhang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian-Qian Wei
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xiao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - HuiFang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
18
|
Shen C, Chen L, Ge JJ, Lu JY, Chen QS, He SJ, Li XY, Zhao J, Sun YM, Wu P, Wu JJ, Liu FT, Wang J. Cerebral Metabolism Related to Cognitive Impairments in Multiple System Atrophy. Front Neurol 2021; 12:652059. [PMID: 33868154 PMCID: PMC8047308 DOI: 10.3389/fneur.2021.652059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: We aimed to characterize the cognitive profiles in multiple system atrophy (MSA) and explore the cerebral metabolism related to the cognitive decline in MSA using 18F-fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET). Methods: In this study, 105 MSA patients were included for cognitive assessment and 84 of them were enrolled for 18F-FDG PET analysis. The comprehensive neuropsychological tests covered five main domains including execution, attention, memory, language, and visuospatial function. The cognitive statuses were classified to MSA with normal cognition (MSA-NC) and MSA with cognitive impairment (MSA-CI), including dementia (MSA-D), and mild cognitive impairment (MSA-MCI). With 18F-FDG PET imaging, the cerebral metabolism differences among different cognitive statuses were analyzed using statistical parametric mapping and post-hoc analysis. Results: Among 84 MSA patients, 52 patients were found with MSA-CI, including 36 patients as MSA-MCI and 16 patients as MSA-D. In detail, the cognitive impairments were observed in all the five domains, primarily in attention, executive function and memory. In 18F-FDG PET imaging, MSA-D and MSA-MCI patients exhibited hypometabolism in left middle and superior frontal lobe compared with MSA-NC (p < 0.001). The normalized regional cerebral metabolic rate of glucose (rCMRglc) in left middle frontal lobe showed relative accuracy in discriminating MSA-CI and MSA-NC [areas under the curve (AUC) = 0.750; 95%CI = 0.6391–0.8609]. Conclusions: Cognitive impairments were not rare in MSA, and the hypometabolism in frontal lobe may contribute to such impairments.
Collapse
Affiliation(s)
- Cong Shen
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-Jie Ge
- Positron emission tomography (PET) Center at Huashan Hospital, Institute of Functional and Molecular Medical Imaging, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- Positron emission tomography (PET) Center at Huashan Hospital, Institute of Functional and Molecular Medical Imaging, Human Phenome Institute, Fudan University, Shanghai, China
| | - Qi-Si Chen
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shu-Jin He
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Yi Li
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- Positron emission tomography (PET) Center at Huashan Hospital, Institute of Functional and Molecular Medical Imaging, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jian-Jun Wu
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Cao C, Wang Q, Yu H, Yang H, Li Y, Guo M, Huo H, Fan G. Morphological Changes in Cortical and Subcortical Structures in Multiple System Atrophy Patients With Mild Cognitive Impairment. Front Hum Neurosci 2021; 15:649051. [PMID: 33833672 PMCID: PMC8021693 DOI: 10.3389/fnhum.2021.649051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Objective This study aimed to investigate the morphometric alterations in the cortical and subcortical structures in multiple system atrophy (MSA) patients with mild cognitive impairment (MCI), and to explore the association with cognitive deficits. Methods A total of 45 MSA patients (25 MSA-only, 20 MSA-MCI) and 29 healthy controls were recruited. FreeSurfer software was used to analyze cortical thickness, and voxel-based morphometry was used to analyze the gray matter volumes. Cortical thickness and gray matter volume changes were correlated with cognitive scores. Results Compared to healthy controls, both MSA subgroups exhibited widespread morphology alterations of brain structures in the fronto-temporal regions. Direct comparison of MSA-MCI and MSA-only patients showed volume reduction in the left superior and middle temporal gyrus, while cortical thinning was found in the left middle and inferior temporal gyrus in MSA-MCI patients. Cortical thinning in the left middle temporal gyrus correlated with cognitive assessment and disease duration. Conclusion Structural changes in the brain occur in MSA-MCI patients. The alteration of brain structure in the left temporal regions might be a biomarker of cognitive decline in MSA-MCI patients.
Collapse
Affiliation(s)
- Chenghao Cao
- Department of Radiology, The First Hospital, China Medical University, Shenyang, China
| | - Qi Wang
- Department of Radiology, Liaoning Thtombus Treatment Center of Integrated Chinese and Western Medicine, Shenyang, China
| | - Hongmei Yu
- Department of Neurology, The First Hospital, China Medical University, Shenyang, China
| | - Huaguang Yang
- Department of Radiology, The First Hospital, China Medical University, Shenyang, China
| | - Yingmei Li
- Department of Radiology, The First Hospital, China Medical University, Shenyang, China
| | - Miaoran Guo
- Department of Radiology, The First Hospital, China Medical University, Shenyang, China
| | - Huaibi Huo
- Department of Radiology, The First Hospital, China Medical University, Shenyang, China
| | - Guoguang Fan
- Department of Radiology, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
20
|
A study on the characteristics of cognitive function in patients with multiple system atrophy in China. Sci Rep 2021; 11:4995. [PMID: 33654145 PMCID: PMC7925668 DOI: 10.1038/s41598-021-84393-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Nonmotor symptoms in patients with multiple system atrophy (MSA) have received an increasing amount of attention in recent years, but no research on MSA patients' cognitive characteristics has been conducted in China. To evaluate the cognitive function of MSA patients in China. Using a case–control study design, 256 MSA patients and 64 controls were evaluated by the Montreal cognitive assessment (MoCA) scale to characterize their cognitive function. Like the controls, 60.5% of the patients with MSA had cognitive impairment, but the characteristics of cognitive impairment between the two groups were different. The cognitive impairment in MSA patients was prominent in the cognitive domains of visuospatial/executive functions, naming, attention, and orientation; particularly, the visuospatial/executive functions were the most significantly impaired, while impairment in language function was mainly seen in the controls. Besides, impairments in visuospatial/executive functions, attention, language, and orientation were more prominent in MSA-P (MSA with predominant Parkinsonism) patients than in MSA-C (MSA with predominant cerebellar ataxia). The cognitive impairments were more severe in patients with probable MSA than in patients with possible MSA. In addition, the results showed that the level of cognitive function was negatively correlated with the severity of MSA. This study, which characterized the cognitive function of MSA patients with the largest sample size known so far in China, found that patients with MSA do have cognitive impairment and display specific characteristics. Therefore, the cognitive impairment of MSA should be paid more attention. The study has been registered in the Chinese Clinical Trial Registry (ChiCTR) (Registration No: ChiCTR1900022462).
Collapse
|
21
|
Miki Y, Foti SC, Hansen D, Strand KM, Asi YT, Tsushima E, Jaunmuktane Z, Lees AJ, Warner TT, Quinn N, Ling H, Holton JL. Hippocampal α-synuclein pathology correlates with memory impairment in multiple system atrophy. Brain 2021; 143:1798-1810. [PMID: 32385496 DOI: 10.1093/brain/awaa126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 03/01/2020] [Indexed: 01/09/2023] Open
Abstract
Recent post-mortem studies reported 22-37% of patients with multiple system atrophy can develop cognitive impairment. With the aim of identifying associations between cognitive impairment including memory impairment and α-synuclein pathology, 148 consecutive patients with pathologically proven multiple system atrophy were reviewed. Among them, 118 (79.7%) were reported to have had normal cognition in life, whereas the remaining 30 (20.3%) developed cognitive impairment. Twelve of them had pure frontal-subcortical dysfunction, defined as the presence of executive dysfunction, impaired processing speed, personality change, disinhibition or stereotypy; six had pure memory impairment; and 12 had both types of impairment. Semi-quantitative analysis of neuronal cytoplasmic inclusions in the hippocampus and parahippocampus revealed a disease duration-related increase in neuronal cytoplasmic inclusions in the dentate gyrus and cornu ammonis regions 1 and 2 of patients with normal cognition. In contrast, such a correlation with disease duration was not found in patients with cognitive impairment. Compared to the patients with normal cognition, patients with memory impairment (pure memory impairment: n = 6; memory impairment + frontal-subcortical dysfunction: n = 12) had more neuronal cytoplasmic inclusions in the dentate gyrus, cornu ammonis regions 1-4 and entorhinal cortex. In the multiple system atrophy mixed pathological subgroup, which equally affects the striatonigral and olivopontocerebellar systems, patients with the same combination of memory impairment developed more neuronal inclusions in the dentate gyrus, cornu ammonis regions 1, 2 and 4, and the subiculum compared to patients with normal cognition. Using patients with normal cognition (n = 18), frontal-subcortical dysfunction (n = 12) and memory impairment + frontal-subcortical dysfunction (n = 18), we further investigated whether neuronal or glial cytoplasmic inclusions in the prefrontal, temporal and cingulate cortices or the underlying white matter might affect cognitive impairment in patients with multiple system atrophy. We also examined topographic correlates of frontal-subcortical dysfunction with other clinical symptoms. Although no differences in neuronal or glial cytoplasmic inclusions were identified between the groups in the regions examined, frontal release signs were found more commonly when patients developed frontal-subcortical dysfunction, indicating the involvement of the frontal-subcortical circuit in the pathogenesis of frontal-subcortical dysfunction. Here, investigating cognitive impairment in the largest number of pathologically proven multiple system atrophy cases described to date, we provide evidence that neuronal cytoplasmic inclusion burden in the hippocampus and parahippocampus is associated with the occurrence of memory impairment in multiple system atrophy. Further investigation is necessary to identify the underlying pathological basis of frontal-subcortical dysfunction in multiple system atrophy.
Collapse
Affiliation(s)
- Yasuo Miki
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK.,Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Sandrine C Foti
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Daniela Hansen
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Kate M Strand
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Yasmine T Asi
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Eiki Tsushima
- Department of Comprehensive Rehabilitation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan
| | - Zane Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Niall Quinn
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Helen Ling
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| |
Collapse
|
22
|
Zhang J, Li Y, Gao Y, Hu J, Huang B, Rong S, Chen J, Zhang Y, Wang L, Feng S, Wang L, Nie K. An SBM-based machine learning model for identifying mild cognitive impairment in patients with Parkinson's disease. J Neurol Sci 2020; 418:117077. [PMID: 32798842 DOI: 10.1016/j.jns.2020.117077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To identify Parkinson's disease with mild cognitive impairment (PD-MCI) through surface-based morphometry (SBM) based machine learning model. METHODS 93 patients with parkinson's disease (35 PD with normal cognition, 58 PD-MCI) were examined, obtaining 276 SBM variables per subject. 20 healthy control subjects were used as the reference. After extracting features with statistically significance, support vector machine (SVM) model with grid search method was applied to identify patients with PD-MCI. Accuracy, matthews correlation coefficient (MCC), receiver operating characteristic curve (ROC), precision-recall curve (PR), AUC-ROC, AUC-PR and leave-one-out cross validation (LOOCV) strategy were employed for model evaluation. RESULTS PD-MCI is characterized by widespread structural abnormality. SVM model with SBM features achieved an accuracy of 80.00% and area under the ROC of 0.86 for identifying PD-MCI. MCC, AUC-PR, and LOOCV classification accuracy were 0.56, 0.89, and 78.08%, respectively. CONCLUSION Automatic identification of PD-MCI could be realized by SBM-based machine learning model.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - You Li
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Jinlong Hu
- School of Computer Science & Engineering, Guangzhou Higher Education Mega Centre South China University of Technology, No.381 Wushan Road, Guangzhou, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Siming Rong
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Jianing Chen
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Limin Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Shujun Feng
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China.
| | - Kun Nie
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China.
| |
Collapse
|
23
|
Park KW, Ko JH, Choi N, Jo S, Park YJ, Lee EJ, Kim SJ, Chung SJ, Lee CS. Cortical hypometabolism associated with cognitive impairment of multiple system atrophy. Parkinsonism Relat Disord 2020; 81:151-156. [PMID: 33137618 DOI: 10.1016/j.parkreldis.2020.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Cognitive impairment is not uncommon in patients with multiple system atrophy (MSA). This study investigated the cortical metabolic changes of MSA and the cortical structure associated with cognitive impairment. METHODS The study included probable/definite MSA patients who underwent fluorodeoxyglucose positron emission tomography and cognitive evaluation based on mini-mental status examination (MMSE). Cerebral metabolism of the entire MSA patients (n = 88) was compared with healthy controls (n = 19) by voxel-wise statistical parametric mapping. Eight brain regions of interest (ROIs) were selected accordingly: the dorsolateral prefrontal, medial superior frontal, insular, posterior parietal, precuneus, lateral temporal, medial temporal, and posterior cingulate regions. Using validated population-based norms, MSA patients were divided by MMSE z-scores into MSA with cognitive dysfunction (MSA-D, n = 30) and without cognitive dysfunction (MSA-ND, n = 58). Regional metabolism of the selected ROIs was compared between the MSA-D and MSA-ND groups by logistic regression models. Correlations between the regional metabolism of the selected ROIs and MMSE z-scores were analyzed with a linear regression model. RESULTS Voxel-wise analysis showed hypometabolism in the frontal, temporal, parietal, and limbic areas in MSA patients than in controls. ROI-based comparisons showed that metabolism in the posterior cingulate (P = 0.006) and medial temporal (P = 0.039) regions was significantly lower in the MSA-D than in the MSA-ND group. The degree of posterior cingulate metabolism correlated significantly with MMSE z-score (P = 0.023). CONCLUSIONS MSA shows fronto-temporo-parietal cortical involvement. Hypometabolism of the limbic regions is associated with cognitive impairment in MSA.
Collapse
Affiliation(s)
- Kye Won Park
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Nari Choi
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology, Heavenly Hospital, Goyang, South Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yun Jik Park
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Su Jung Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chong S Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
24
|
Jung Lee J, Han Yoon J, Jin Kim S, Soo Yoo H, Jong Chung S, Hyun Lee Y, Yun Kang S, Shin HW, Keun Song S, Yong Hong J, Sunwoo M, Eun Lee J, Sam Baik J, Sohn YH, Hyu Lee P. Inosine 5'-Monophosphate to Raise Serum Uric Acid Level in Multiple System Atrophy (IMPROVE-MSA study). Clin Pharmacol Ther 2020; 109:1274-1281. [PMID: 33064299 DOI: 10.1002/cpt.2082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
The aim of this trial was to investigate the safety, tolerability, and capability of serum uric acid (UA) elevation of inosine 5'-monophosphate (IMP) in multiple system atrophy (MSA). The IMPROVE-MSA trial was a randomized, double-blind, placebo-controlled trial in patients with MSA with no history of hyperuricemia-related disorders. The participants were assigned to placebo (n = 25) or IMP (n = 30) in a 1 to 1 ratio, and then followed up for 24 weeks. The primary end points included safety, tolerability, and alteration of the serum UA level during the follow-up period. The secondary end points were changes in scores of the unified MSA rating scale (UMSARS) and the Mini-Mental Status Examination (MMSE) and Montreal Cognitive Assessment (MoCA). The total number of adverse events (AEs) and serious AEs was comparable between the active and placebo groups. Serum UA level (mg/dL) was significantly increased from baseline (active vs. placebo, 4.57 vs. 4.58; P = 0.98) to study end point (6.96 vs. 4.43; P < 0.001) in the active group compared with the placebo group (time × group interaction; P < 0.001). The change in UMSARS scores did not differ between the active and placebo groups. However, the active group showed better alterations in MoCA scores with nominal significance (P < 0.001) and tendency for better alterations in MMSE scores (P = 0.09) than the placebo group. Our data demonstrated that IMP treatment was generally safe and well-tolerated in patients with MSA. A further trial with a long-term follow-up is required to examine whether UA elevation will slow clinical progression in early MSA.
Collapse
Affiliation(s)
- Jae Jung Lee
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Jung Han Yoon
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Sang Jin Kim
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Suk Yun Kang
- Department of Neurology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Hae-Won Shin
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sook Keun Song
- Department of Neurology, Jeju National University School of Medicine, Jeju, South Korea
| | - Jin Yong Hong
- Department of Neurology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - MunKyung Sunwoo
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam, South Korea
| | - Ji Eun Lee
- Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Jong Sam Baik
- Department of Neurology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Saeed U, Lang AE, Masellis M. Neuroimaging Advances in Parkinson's Disease and Atypical Parkinsonian Syndromes. Front Neurol 2020; 11:572976. [PMID: 33178113 PMCID: PMC7593544 DOI: 10.3389/fneur.2020.572976] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) and atypical Parkinsonian syndromes are progressive heterogeneous neurodegenerative diseases that share clinical characteristic of parkinsonism as a common feature, but are considered distinct clinicopathological disorders. Based on the predominant protein aggregates observed within the brain, these disorders are categorized as, (1) α-synucleinopathies, which include PD and other Lewy body spectrum disorders as well as multiple system atrophy, and (2) tauopathies, which comprise progressive supranuclear palsy and corticobasal degeneration. Although, great strides have been made in neurodegenerative disease research since the first medical description of PD in 1817 by James Parkinson, these disorders remain a major diagnostic and treatment challenge. A valid diagnosis at early disease stages is of paramount importance, as it can help accommodate differential prognostic and disease management approaches, enable the elucidation of reliable clinicopathological relationships ideally at prodromal stages, as well as facilitate the evaluation of novel therapeutics in clinical trials. However, the pursuit for early diagnosis in PD and atypical Parkinsonian syndromes is hindered by substantial clinical and pathological heterogeneity, which can influence disease presentation and progression. Therefore, reliable neuroimaging biomarkers are required in order to enhance diagnostic certainty and ensure more informed diagnostic decisions. In this article, an updated presentation of well-established and emerging neuroimaging biomarkers are reviewed from the following modalities: (1) structural magnetic resonance imaging (MRI), (2) diffusion-weighted and diffusion tensor MRI, (3) resting-state and task-based functional MRI, (4) proton magnetic resonance spectroscopy, (5) transcranial B-mode sonography for measuring substantia nigra and lentiform nucleus echogenicity, (6) single photon emission computed tomography for assessing the dopaminergic system and cerebral perfusion, and (7) positron emission tomography for quantifying nigrostriatal functions, glucose metabolism, amyloid, tau and α-synuclein molecular imaging, as well as neuroinflammation. Multiple biomarkers obtained from different neuroimaging modalities can provide distinct yet corroborative information on the underlying neurodegenerative processes. This integrative "multimodal approach" may prove superior to single modality-based methods. Indeed, owing to the international, multi-centered, collaborative research initiatives as well as refinements in neuroimaging technology that are currently underway, the upcoming decades will mark a pivotal and exciting era of further advancements in this field of neuroscience.
Collapse
Affiliation(s)
- Usman Saeed
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Center, Toronto, ON, Canada.,Cognitive and Movement Disorders Clinic, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| |
Collapse
|
26
|
Early autonomic and cognitive dysfunction in PD, DLB and MSA: blurring the boundaries between α-synucleinopathies. J Neurol 2020; 267:3444-3456. [PMID: 32594302 PMCID: PMC7320652 DOI: 10.1007/s00415-020-09985-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
Differential diagnosis between Parkinson's disease, dementia with Lewy bodies and multiple system atrophy can be difficult, especially because in early phase they might present with overlapping clinical features. Notably, orthostatic hypotension and cognitive dysfunction are common nonmotor aspects of parkinsonian syndromes and can be both present from the earliest stages of all α-synucleinopathies, indicating a common neurobiological basis in their strong relationship. In view of the increasing awareness about the prevalence of mild cognitive dysfunction in multiple system atrophy, the relevance of autonomic dysfunction in demented parkinsonian patients, the critical role of non-motor symptoms in clustering Parkinson's disease patients and the shift to studying patients in the prodromal phase, we will discuss some intrinsic limitations of current clinical diagnostic criteria, even when applied by movement disorder specialists. In particular, we will focus on the early coexistence of autonomic and cognitive dysfunction in the setting of overt or latent parkinsonism as pitfalls in the differential diagnosis of α-synucleinopathies. As early and accurate diagnosis remains of outmost importance for counselling of patients and timely enrolment into disease-modifying clinical trials, a continuous effort of research community is ongoing to further improve the clinical diagnostic accuracy of α-synucleinopathies.
Collapse
|
27
|
Jellinger KA. Neuropathological findings in multiple system atrophy with cognitive impairment. J Neural Transm (Vienna) 2020; 127:1031-1039. [PMID: 32367182 DOI: 10.1007/s00702-020-02201-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/26/2020] [Indexed: 01/10/2023]
Abstract
Cognitive impairment (CI), previously considered an exclusion criterium for the diagnosis of multiple system atrophy (MSA) according to the second consensus criteria, is not uncommon in MSA. Mild cognitive impairment (MCI) has been reported in up to 47% of MSA patients, while severe dementia is rare. We related clinical CI with neuropathological findings in 48 autopsy-proven cases of MSA. This retrospective study included 33 parkinsonism predominant MSA (MSA-P), and 15 cerebellar ataxia-predominant MSA (MSA-C) cases (mean age at death 60.5 ± 7.8; range 46-82 years). Cognitive state was assessed from hospital charts, however, without comprehensive neuropsychological testing. Neuropathological examination, in addition to grading of the MSA pathologies, included semiquantitative assessment of Lewy and Alzheimer-related co-pathologies. Their incidence was compared with 143 age-matched controls (mean age 60.5 ± 7.6 years). MCI reported in ten cases (20.8%) was associated with moderate cortical tau pathology in only three; moderate CI in seven patients (14.5%) was associated with cortical amyloid plaques and moderate cortical tau pathology in six each, and one with probable primary age-related tauopathy (PART); a female aged 82 years with severe dementia showed fully developed Alzheimer disease. Cortical amyloid plaques, observed in eight cases, three of them without tau pathology, were associated with clinical MCI, as was cortical Lewy pathology in five. Two cases with cortical Lewy pathology and neuritic Braak stages II and III, and three with Braak stage IV, without cortical Lewy bodies, had shown moderate CI. Cortical Lewy pathology observed in four cases was not associated with clinical CI. 77.1% of the MSA cases were free of Alzheimer-type lesions, compared to 42% of controls; while Lewy pathology in the MSA cohort (22.9%) was significantly higher than in the control group (8.4%) both p < 0.001. Mild-to-moderate CI, reported in 35.3% of MSA patients, being significantly older than those without CI, were frequently associated with cortical Alzheimer (Braak stages III and IV) and Lewy pathologies, while only one with severe dementia had fully developed Alzheimer disease. In view of these findings in a limited series of MSA patients, further studies to elucidate the pathological basis of cognitive impairment in MSA are warranted.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
28
|
Arribarat G, Péran P. Quantitative MRI markers in Parkinson's disease and parkinsonian syndromes. Curr Opin Neurol 2020; 33:222-229. [DOI: 10.1097/wco.0000000000000796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Eschlböck S, Delazer M, Krismer F, Bodner T, Fanciulli A, Heim B, Heras Garvin A, Kaindlstorfer C, Karner E, Mair K, Rabensteiner C, Raccagni C, Seppi K, Poewe W, Wenning GK. Cognition in multiple system atrophy: a single-center cohort study. Ann Clin Transl Neurol 2020; 7:219-228. [PMID: 32031752 PMCID: PMC7034507 DOI: 10.1002/acn3.50987] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Cognitive impairment in multiple system atrophy (MSA) is common, but remain poorly characterized. We evaluated cognitive and behavioral features in MSA patients and assessed between-group differences for MSA subtypes and the effect of orthostatic hypotension (OH) on cognition. METHODS This retrospective study included 54 patients with clinical diagnosis of possible and probable MSA referred to the Department of Neurology at Medical University of Innsbruck between 2000 and 2018. Neurological work-up included comprehensive neuropsychological testing including Consortium to Establish a Registry for Alzheimer's Disease (CERAD-plus) test battery, Frontal Assessment Battery (FAB), digit span test (DST), clock drawing task (CLOX1), and Hospital Anxiety and Depression Scale (HADS-D). RESULTS The mean MMSE score was 27.6 points. Overall, slight to moderate cognitive impairment was noted in up to 40% of patients, with predominant impairment of executive function and verbal memory. Patients with the cerebellar variant performed significantly worse than patients with the parkinsonian type (P < 0.05) in a screening of executive functions (FAB) and in phonemic verbal fluency. Depression and anxiety scores were elevated in 28% and 22% of MSA patients, respectively. Cognitive profile, depression, and anxiety levels were comparable between patients with and without OH. INTERPRETATION Cognitive deficits are relatively frequent in MSA and primarily affect executive functions and verbal memory. Future comparative studies including Parkinson dementia, Lewy body disease, and MSA cases with and without OH are required to elucidate disease-specific cognitive profiles in these synucleinopathies and to examine the influence of cardiovascular autonomic dysfunction on cognitive function in MSA.
Collapse
Affiliation(s)
- Sabine Eschlböck
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Margarete Delazer
- Division of Neuropsychology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Bodner
- Division of Neuropsychology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonio Heras Garvin
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Elfriede Karner
- Division of Neuropsychology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katherina Mair
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Cecilia Raccagni
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Kawabata K, Hara K, Watanabe H, Bagarinao E, Ogura A, Masuda M, Yokoi T, Kato T, Ohdake R, Ito M, Katsuno M, Sobue G. Alterations in Cognition-Related Cerebello-Cerebral Networks in Multiple System Atrophy. THE CEREBELLUM 2020; 18:770-780. [PMID: 31069705 DOI: 10.1007/s12311-019-01031-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We aimed to elucidate the effect of cerebellar degeneration in relation to cognition in multiple system atrophy (MSA). Thirty-two patients diagnosed with probable MSA and 32 age- and gender-matched healthy controls (HCs) were enrolled. We conducted voxel-based morphometry (VBM) for anatomical images and independent component analysis (ICA), dual-regression analysis, and seed-based analysis for functional images with voxel-wise gray matter correction. In the MSA group, a widespread cerebellar volume loss was observed. ICA and dual-regression analysis showed lower functional connectivity (FC) in the left executive control and salience networks in regions located in the cerebellum. Seed-based analysis using the identified cerebellar regions as seeds showed extensive disruptions in cerebello-cerebral networks. Global cognitive scores correlated with the FC values between the right lobules VI/crus I and the medial prefrontal/anterior cingulate cortices and between the same region and the amygdala/parahippocampal gyrus. Our study indicates that cerebellar degeneration in MSA causes segregation of cerebellar-cerebral networks. Furthermore, the cognitive deficits in MSA may be driven by decreased cerebello-prefrontal and cerebello-amygdaloid functional connections.
Collapse
Affiliation(s)
- Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takamasa Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Mizuki Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan. .,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
31
|
Altered resting-state voxel-level whole-brain functional connectivity in multiple system atrophy patients with cognitive impairment. Clin Neurophysiol 2020; 131:54-62. [DOI: 10.1016/j.clinph.2019.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/04/2019] [Accepted: 09/29/2019] [Indexed: 01/23/2023]
|
32
|
Cognitive impairment and structural brain damage in multiple system atrophy-parkinsonian variant. J Neurol 2019; 267:87-94. [DOI: 10.1007/s00415-019-09555-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
|
33
|
Fiorenzato E, Antonini A, Camparini V, Weis L, Semenza C, Biundo R. Characteristics and progression of cognitive deficits in progressive supranuclear palsy vs. multiple system atrophy and Parkinson's disease. J Neural Transm (Vienna) 2019; 126:1437-1445. [PMID: 31432258 DOI: 10.1007/s00702-019-02065-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023]
Abstract
Cognitive impairment is frequent in progressive supranuclear palsy (PSP) and less common in multiple system atrophy (MSA), but characteristics and progression compared with Parkinson's disease (PD) need to be properly defined. We evaluated 35 PSP with Richardson's syndrome (PSP-RS), 30 MSA as well as 65 age-, sex-, and education-matched PD with an extensive clinical and neuropsychological assessment, allowing Level II cognitive diagnosis. Eighteen PSP, 12 MSA and 30 PD had a second evaluation between 12 and 18 months (mean 15 months) after the first assessment. PSP performance at Montreal Cognitive Assessment (MoCA), verbal fluencies (phonemic and semantic tasks), Stroop test (Error and Time), Digit Span Sequencing (DSS), incomplete letters of Visual Object and Space Perception (VOSP) and Benton's Judgment of Line Orientation (JLO) performance were significantly poorer at baseline compared to PD and MSA. Executive, language and visuospatial abilities declined longitudinally in PSP, but not in PD and MSA. After 1.5 year, 16% of PSP converted to dementia. Our study provides evidence that cognitive progression is more severe and rapid in PSP-RS than PD and MSA. Further, we observed that MoCA, verbal fluency (particularly semantic), DSS and Benton's JLO are valuable tests to detect cognitive progression in PSP-RS and may be proposed as possible biomarker to assess efficacy of disease modification strategies.
Collapse
Affiliation(s)
| | - Angelo Antonini
- Department of Neurosciences, Padova Neuroscience Center, University of Padua, Via Giustiniani, 5, 35128, Padua, Italy
| | | | - Luca Weis
- IRCCS San Camillo Hospital, Via Alberoni, 70, 30126, Venice, Italy
| | - Carlo Semenza
- IRCCS San Camillo Hospital, Via Alberoni, 70, 30126, Venice, Italy.,Department of Neurosciences, Padova Neuroscience Center, University of Padua, Via Giustiniani, 5, 35128, Padua, Italy
| | - Roberta Biundo
- IRCCS San Camillo Hospital, Via Alberoni, 70, 30126, Venice, Italy
| |
Collapse
|
34
|
Ndayisaba A, Herrera-Vaquero M, Wenning GK, Stefanova N. Induced pluripotent stem cells in multiple system atrophy: recent developments and scientific challenges. Clin Auton Res 2019; 29:385-395. [PMID: 31187309 PMCID: PMC6695370 DOI: 10.1007/s10286-019-00614-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/11/2019] [Indexed: 12/17/2022]
Abstract
Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disease, with no known genetic cause to date. Oligodendroglial α-synuclein accumulation, neuroinflammation, and early myelin dysfunction are hallmark features of the disease and have been modeled in part in various preclinical models of MSA, yet the pathophysiology of MSA remains elusive. Here, we review the role and scientific challenges of induced pluripotent stem cells in the detection of novel biomarkers and druggable targets in MSA.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria
| | - Marcos Herrera-Vaquero
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020, Innsbruck, Austria.
| |
Collapse
|
35
|
Progressive supranuclear palsy and multiple system atrophy: clinicopathological concepts and therapeutic challenges. Curr Opin Neurol 2019; 31:448-454. [PMID: 29746401 DOI: 10.1097/wco.0000000000000581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This update discusses novel aspects on clinicopathological concepts and therapeutic challenges in progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), arising from publications of the last 1.5 years. RECENT FINDINGS The clinical criteria for diagnosis of PSP have been revised. Clinical variability of pathologically defined PSP and MSA makes the development of mature biomarkers for early diagnosis and biomarker-based trial design indispensable. Novel molecular techniques for biomarker supported diagnosis of PSP and MSA and for monitoring disease progression are being studied. Research in the pathophysiology of both diseases generates gradual progress in the understanding of the underlying processes. Several promising disease-modifying therapeutic approaches for PSP and MSA are now moving into clinical trials. SUMMARY Recent research generates insights in the pathophysiological relevant processes and raises hope for earlier clinical diagnosis and disease-modifying therapies of patients with PSP and MSA.
Collapse
|
36
|
Abstract
Qualitative and quantitative structural magnetic resonance imaging offer objective measures of the underlying neurodegeneration in atypical parkinsonism. Regional changes in tissue volume, signal changes and increased deposition of iron as assessed with different structural MRI techniques are surrogate markers of underlying neurodegeneration and may reflect cell loss, microglial proliferation and astroglial activation. Structural MRI has been explored as a tool to enhance diagnostic accuracy in differentiating atypical parkinsonian disorders (APDs). Moreover, the longitudinal assessment of serial structural MRI-derived parameters offers the opportunity for robust inferences regarding the progression of APDs. This review summarizes recent research findings as (1) a diagnostic tool for APDs as well as (2) as a tool to assess longitudinal changes of serial MRI-derived parameters in the different APDs.
Collapse
|
37
|
Watanabe H, Riku Y, Hara K, Kawabata K, Nakamura T, Ito M, Hirayama M, Yoshida M, Katsuno M, Sobue G. Clinical and Imaging Features of Multiple System Atrophy: Challenges for an Early and Clinically Definitive Diagnosis. J Mov Disord 2018; 11:107-120. [PMID: 30086614 PMCID: PMC6182302 DOI: 10.14802/jmd.18020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple system atrophy (MSA) is an adult-onset, progressive neurodegenerative disorder. Patients with MSA show various phenotypes during the course of their illness, including parkinsonism, cerebellar ataxia, autonomic failure, and pyramidal signs. Patients with MSA sometimes present with isolated autonomic failure or motor symptoms/ signs. The median duration from onset to the concomitant appearance of motor and autonomic symptoms is approximately 2 years but can range up to 14 years. As the presence of both motor and autonomic symptoms is essential for the current diagnostic criteria, early diagnosis is difficult when patients present with isolated autonomic failure or motor symptoms/signs. In contrast, patients with MSA may show severe autonomic failure and die before the presentation of motor symptoms/signs, which are currently required for the diagnosis of MSA. Recent studies have also revealed that patients with MSA may show nonsupporting features of MSA such as dementia, hallucinations, and vertical gaze palsy. To establish early diagnostic criteria and clinically definitive categorization for the successful development of disease-modifying therapy or symptomatic interventions for MSA, research should focus on the isolated phase and atypical symptoms to develop specific clinical, imaging, and fluid biomarkers that satisfy the requirements for objectivity, for semi- or quantitative measurements, and for uncomplicated, worldwide availability. Several novel techniques, such as automated compartmentalization of the brain into multiple parcels for the quantification of gray and white matter volumes on an individual basis and the visualization of α-synuclein and other candidate serum and cerebrospinal fluid biomarkers, may be promising for the early and clinically definitive diagnosis of MSA.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Riku
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
38
|
Maeda N, Honda H, Suzuki SO, Fujii N, Kira JI, Iwaki T. Mitochondrial dysfunction and altered ribostasis in hippocampal neurons with cytoplasmic inclusions of multiple system atrophy. Neuropathology 2018; 38:361-371. [PMID: 29961958 DOI: 10.1111/neup.12482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 11/30/2022]
Abstract
Multiple system atrophy (MSA) is a sporadic adult-onset neurodegenerative disease. It has recently been shown that patients with MSA accompanied by cognitive decline display numerous neuronal cytoplasmic inclusions (NCIs) in the limbic neurons. We examined potential mechanisms underlying the formation of these NCIs by determining of mitochondrial function and statuses of RNA processing by analyzing 12 pathologically confirmed cases of MSA. Among them, four had cognitive impairment Semiquantitative evaluation using immunohistochemistry analyses revealed a significantly greater NCI burden in the hippocampal cornu ammonis 1 (CA1) subfield, subiculum, and amygdala in the cases with cognitive impairments compared with those without cognitive impairment. Immunofluorescent staining revealed that limbic neurons with NCIs often accelerated production of reactive oxygen species (ROS) and degraded mitochondrial quality control. Immunofluorescent staining also revealed that neurons with these NCIs translocated heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) from the nucleus and aggregated abnormally at the perinuclear rim. Since the NCIs in the hippocampal neurons of MSA with cognitive impairments were more numerous, the neuronal mitochondrial dysfunction and altered ribostasis observed in NCI formation may be involved in the hippocampal degeneration of MSA.
Collapse
Affiliation(s)
- Norihisa Maeda
- Department of Neuropathology, Kyushu University, Fukuoka, Japan
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Kyushu University, Fukuoka, Japan
| | | | - Naoki Fujii
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
Palma JA, Norcliffe-Kaufmann L, Kaufmann H. Diagnosis of multiple system atrophy. Auton Neurosci 2018; 211:15-25. [PMID: 29111419 PMCID: PMC5869112 DOI: 10.1016/j.autneu.2017.10.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Multiple system atrophy (MSA) may be difficult to distinguish clinically from other disorders, particularly in the early stages of the disease. An autonomic-only presentation can be indistinguishable from pure autonomic failure. Patients presenting with parkinsonism may be misdiagnosed as having Parkinson disease. Patients presenting with the cerebellar phenotype of MSA can mimic other adult-onset ataxias due to alcohol, chemotherapeutic agents, lead, lithium, and toluene, or vitamin E deficiency, as well as paraneoplastic, autoimmune, or genetic ataxias. A careful medical history and meticulous neurological examination remain the cornerstone for the accurate diagnosis of MSA. Ancillary investigations are helpful to support the diagnosis, rule out potential mimics, and define therapeutic strategies. This review summarizes diagnostic investigations useful in the differential diagnosis of patients with suspected MSA. Currently used techniques include structural and functional brain imaging, cardiac sympathetic imaging, cardiovascular autonomic testing, olfactory testing, sleep study, urological evaluation, and dysphagia and cognitive assessments. Despite advances in the diagnostic tools for MSA in recent years and the availability of consensus criteria for clinical diagnosis, the diagnostic accuracy of MSA remains sub-optimal. As other diagnostic tools emerge, including skin biopsy, retinal biomarkers, blood and cerebrospinal fluid biomarkers, and advanced genetic testing, a more accurate and earlier recognition of MSA should be possible, even in the prodromal stages. This has important implications as misdiagnosis can result in inappropriate treatment, patient and family distress, and erroneous eligibility for clinical trials of disease-modifying drugs.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, NY, USA
| | - Lucy Norcliffe-Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, NY, USA
| | - Horacio Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, NY, USA.
| |
Collapse
|
40
|
Koga S, Dickson DW. Recent advances in neuropathology, biomarkers and therapeutic approach of multiple system atrophy. J Neurol Neurosurg Psychiatry 2018; 89:175-184. [PMID: 28860330 DOI: 10.1136/jnnp-2017-315813] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/07/2017] [Accepted: 08/16/2017] [Indexed: 01/20/2023]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterised by a variable combination of autonomic failure, levodopa-unresponsive parkinsonism, cerebellar ataxia and pyramidal symptoms. The pathological hallmark is the oligodendrocytic glial cytoplasmic inclusion (GCI) consisting of α-synuclein; therefore, MSA is included in the category of α-synucleinopathies. MSA has been divided into two clinicopathological subtypes: MSA with predominant parkinsonism and MSA with predominant cerebellar ataxia, which generally correlate with striatonigral degeneration and olivopontocerebellar atrophy, respectively. It is increasingly recognised, however, that clinical and pathological features of MSA are broader than previously considered.In this review, we aim to describe recent advances in neuropathology of MSA from a review of the literature and from information derived from review of nearly 200 definite MSA cases in the Mayo Clinic Brain Bank. In light of these new neuropathological findings, GCIs and neuronal cytoplasmic inclusions play an important role in clinicopathological correlates of MSA. We also focus on clinical diagnostic accuracy and differential diagnosis of MSA as well as candidate biomarkers. We also review some controversial topics in MSA. Cognitive impairment, which has been a non-supporting feature of MSA, is considered from both clinical and pathological perspectives. The cellular origin of α-synuclein in GCI and a 'prion hypothesis' are discussed. Finally, completed and ongoing clinical trials targeting disease modification, including immunotherapy, are summarised.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
41
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
42
|
Zhao B, Liu H, Li H, Shang X. Abnormal functional connectivity of the amygdala is associated with depressive symptoms in patients with multiple system atrophy. Neuropsychiatr Dis Treat 2018; 14:3133-3142. [PMID: 30532544 PMCID: PMC6247974 DOI: 10.2147/ndt.s178657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Depressive symptoms are frequent nonmotor symptoms that occur in multiple system atrophy (MSA) patients. However, possible changes that can present in the amygdala (AMY) functional connectivity (FC) of the brain in MSA patients with depressive symptoms (DMSA patients) remain largely unknown. MATERIALS AND METHODS Resting-state functional magnetic resonance imaging scans were obtained from 29 DMSA patients, 28 MSA patients without depression symptoms (NDMSA patients), and 34 healthy controls (HCs). FC was analyzed by defining the bilateral AMY as the seed region. Correlation analysis was performed between the FC and clinical scores. RESULTS When compared with NDMSA patients, DMSA patients showed increased bilateral AMY FC in the left middle frontal gyrus (MFG) and decreased right AMY FC in the left middle occipital gyrus. Moreover, the AMY FC values in the left middle frontal cortex were positively correlated with the Hamilton Depression Rating Scale-17 item scores. Furthermore, relative to the HCs, DMSA patients presented decreased bilateral AMY FC values in the visuospatial cortex, sensorimotor networks, and limbic areas. CONCLUSION Depressive symptoms are associated with AMY-MFG FC anomalies in MSA patients. We propose that the middle frontal cortex may play an important role in the neuropathophysiology of depression in MSA patients.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China, .,Department of Neurology, Shenyang Fifth People Hospital, Shenyang 110023, China
| | - Hu Liu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Huanhuan Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| |
Collapse
|
43
|
Koga S, Parks A, Kasanuki K, Sanchez-Contreras M, Baker MC, Josephs KA, Ahlskog JE, Uitti RJ, Graff-Radford N, van Gerpen JA, Wszolek ZK, Rademakers R, Dickson DW. Cognitive impairment in progressive supranuclear palsy is associated with tau burden. Mov Disord 2017; 32:1772-1779. [PMID: 29082658 PMCID: PMC5732021 DOI: 10.1002/mds.27198] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/14/2017] [Accepted: 09/13/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cognitive impairment is one of the core features of progressive supranuclear palsy. This study aimed to clarify the profile of cognitive impairment and its underlying pathology in progressive supranuclear palsy. METHODS We retrospectively reviewed medical records to evaluate the pattern and severity of cognitive impairment in 121 autopsy-confirmed progressive supranuclear palsy patients. A subset of 37 patients underwent neuropsychological evaluation as part of their clinical workup. The burden of progressive supranuclear palsy-related tau pathology (neurofibrillary tangles/pretangles, coiled bodies, tufted astrocytes, and threads) was semiquantitatively scored in 20 vulnerable brain regions. Concurrent pathologies potentially associated with cognitive impairment, such as Alzheimer's-type pathology, were also assessed. To evaluate possible genetic risk factors for cognitive impairment, genetic analysis for APOE and MAPT was performed. RESULTS Ninety patients (74%) had documented cognitive impairment based on neurologic evaluation. In a subgroup with neuropsychological testing (n = 37), executive functioning was the most severely impaired cognitive domain. A global cognitive impairment index (Spearman's rho, -0.49; P = 0.005) and executive functioning were negatively correlated with total tau burden (Spearman's rho, -0.51; P = 0.003), but not correlated with the Alzheimer's-type pathology. APOE ɛ4 carriers had more severe amyloid pathology, but total tau burden and a global cognitive impairment index did not differ from APOE ɛ4 noncarriers. CONCLUSION Cognitive impairment in progressive supranuclear palsy, most notably executive dysfunction, is associated with severity of progressive supranuclear palsy-related tau pathology. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, 32224 USA
| | - Adam Parks
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida, 32224 USA
| | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, 32224 USA
| | | | - Matthew C. Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, 32224 USA
| | - Keith A. Josephs
- Department of Neurology (Behavioural Neurology & Movement Disorders), Mayo Clinic, Rochester, Minnesota, 55905
| | - J. Eric Ahlskog
- Department of Neurology (Behavioural Neurology & Movement Disorders), Mayo Clinic, Rochester, Minnesota, 55905
| | - Ryan J. Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, 32224 USA
| | | | - Jay A. van Gerpen
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, 32224 USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, 32224 USA
| |
Collapse
|
44
|
Jellinger KA. Potential clinical utility of multiple system atrophy biomarkers. Expert Rev Neurother 2017; 17:1189-1208. [DOI: 10.1080/14737175.2017.1392239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Changes of brain structure in Parkinson’s disease patients with mild cognitive impairment analyzed via VBM technology. Neurosci Lett 2017; 658:121-132. [DOI: 10.1016/j.neulet.2017.08.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022]
|
46
|
Heim B, Krismer F, De Marzi R, Seppi K. Magnetic resonance imaging for the diagnosis of Parkinson's disease. J Neural Transm (Vienna) 2017; 124:915-964. [PMID: 28378231 PMCID: PMC5514207 DOI: 10.1007/s00702-017-1717-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
The differential diagnosis of parkinsonian syndromes is considered one of the most challenging in neurology and error rates in the clinical diagnosis can be high even at specialized centres. Despite several limitations, magnetic resonance imaging (MRI) has undoubtedly enhanced the diagnostic accuracy in the differential diagnosis of neurodegenerative parkinsonism over the last three decades. This review aims to summarize research findings regarding the value of the different MRI techniques, including advanced sequences at high- and ultra-high-field MRI and modern image analysis algorithms, in the diagnostic work-up of Parkinson's disease. This includes not only the exclusion of alternative diagnoses for Parkinson's disease such as symptomatic parkinsonism and atypical parkinsonism, but also the diagnosis of early, new onset, and even prodromal Parkinson's disease.
Collapse
Affiliation(s)
- Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Roberto De Marzi
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
47
|
Koga S, Parks A, Dickson DW. Reply re: "Profile of cognitive impairment and underlying pathology in multiple system atrophy". Mov Disord 2017; 32:1339-1340. [PMID: 28671292 DOI: 10.1002/mds.27084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 11/07/2022] Open
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Adam Parks
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
48
|
Fiorenzato E, Antonini A, Wenning G, Biundo R. Cognitive impairment in multiple system atrophy. Mov Disord 2017; 32:1338-1339. [PMID: 28671311 DOI: 10.1002/mds.27085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 01/15/2023] Open
Affiliation(s)
- Eleonora Fiorenzato
- Parkinson Disease and Movement Disorders Unit, IRCCS San Camillo Hospital Foundation, Venice-Lido, Italy.,Department of General Psychology, University of Padua, Padua, Italy
| | - Angelo Antonini
- Parkinson Disease and Movement Disorders Unit, IRCCS San Camillo Hospital Foundation, Venice-Lido, Italy.,Department of Neurosciences, University of Padua, Padua, Italy
| | - Gregor Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Roberta Biundo
- Parkinson Disease and Movement Disorders Unit, IRCCS San Camillo Hospital Foundation, Venice-Lido, Italy
| |
Collapse
|