1
|
Xiang Y, Xin J, Le W, Yang Y. Neurogranin: A Potential Biomarker of Neurological and Mental Diseases. Front Aging Neurosci 2020; 12:584743. [PMID: 33132903 PMCID: PMC7573493 DOI: 10.3389/fnagi.2020.584743] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Neurogranin (Ng) is a small protein usually expressed in granule-like structures in pyramidal cells of the hippocampus and cortex. However, its clinical value is not fully clear so far. Currently, Ng is proved to be involved in synaptic plasticity, synaptic regeneration, and long-term potentiation mediated by the calcium- and calmodulin-signaling pathways. Due to both the synaptic integrity and function as the growing concerns in the pathogenesis of a wide variety of neurological and mental diseases, a series of researches published focused on the associations between Ng and these kinds of diseases in the past decade. Therefore, in this review, we highlight several diseases, which include, but are not limited to, Alzheimer’s disease, Parkinson disease, Creutzfeldt–Jakob disease, neuro-HIV, neurosyphilis, schizophrenia, depression, traumatic brain injury, and acute ischemic stroke, and summarize the associations between cerebrospinal fluid or blood-derived Ng with these diseases. We propose that Ng is a potential and promising biomarker to improve the diagnosis, prognosis, and severity evaluation of these diseases in the future.
Collapse
Affiliation(s)
- Yang Xiang
- Institute of Neuroscience, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Jiayan Xin
- North Sichuan Medical College, Nanchong, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Weidong Le
- Institute of Neuroscience, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongjian Yang
- Department of Cardiovasology, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
2
|
Kranaster L, Hoyer C, Mindt S, Neumaier M, Müller N, Zill P, Schwarz MJ, Moll N, Lutz B, Bindila L, Zerr I, Schmitz M, Blennow K, Zetterberg H, Haffner D, Leifheit-Nestler M, Ozbalci C, Sartorius A. The novel seizure quality index for the antidepressant outcome prediction in electroconvulsive therapy: association with biomarkers in the cerebrospinal fluid. Eur Arch Psychiatry Clin Neurosci 2020; 270:911-919. [PMID: 31760473 DOI: 10.1007/s00406-019-01086-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022]
Abstract
For patients with depression treated with electroconvulsive therapy (ECT), the novel seizure quality index (SQI) can predict the risk of non-response (and non-remission)-as early as after the second ECT session-based the extent of several ictal parameters of the seizure. We aim to test several CSF markers on their ability to predict the degree of seizure quality, measured by the SQI to identify possible factors, that could explain some variability of the seizure quality. Baseline CSF levels of metabolites from the kynurenine pathway, markers of neurodegeneration (tau proteins, β-amyloids and neurogranin), elements of the innate immune system, endocannabinoids, sphingolipids, neurotrophic factors (VEGF) and Klotho were measured before ECT in patients with depression (n = 12) to identify possible correlations with the SQI by Pearson's partial correlation. Negative, linear relationships with the SQI for response were observed for CSF levels of T-tau (rpartial = - 0.69, p = 0.019), phosphatidylcholines (rpartial = - 0.52, p = 0.038) and IL-8 (rpartial = - 0.67, p = 0.047). Regarding the SQI for remission, a negative, linear relationship was noted with CSF levels of the endocannabinoid AEA (rpartial = - 0.70, p = 0.024) and CD163 (rpartial = - 0.68, p = 0.029). In sum, CSF Markers for the innate immune system, for neurodegeneration and from lipids were found to be associated with the SQI for response and remission after adjusting for age. Consistently, higher CSF levels of the markers were always associated with lower seizure quality. Based on these results, further research regarding the mechanism of seizure quality in ECT is suggested.
Collapse
Affiliation(s)
- Laura Kranaster
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany.
| | - Carolin Hoyer
- Department of Neurology, University Medical Centre Mannheim, Mannheim, Germany
| | - Sonani Mindt
- Institute for Clinical Chemistry, University Medical Centre Mannheim, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry, University Medical Centre Mannheim, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Munich, Germany.,Marion Von Tessin Memory-Zentrum, München, Germany
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Munich, Germany
| | - Markus J Schwarz
- Institute of Laboratory Medicine, University Hospital LMU Munich, Munich, Germany
| | - Natalie Moll
- Institute of Laboratory Medicine, University Hospital LMU Munich, Munich, Germany
| | - Beat Lutz
- Institute for Physiological Chemistry, University Medical Center Mainz of the Johannes Gutenberg University, Mainz, Germany
| | - Laura Bindila
- Institute for Physiological Chemistry, University Medical Center Mainz of the Johannes Gutenberg University, Mainz, Germany
| | - Inga Zerr
- Department of Neurology, National TSE (Transmissible Spongiform Encephalopathies) Reference Centre, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, National TSE (Transmissible Spongiform Encephalopathies) Reference Centre, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Cagakan Ozbalci
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.,Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| |
Collapse
|