1
|
Fang X, Wang X, Hao M, Zhong G, Gao M, Ma Y, Pan Y, Yang H, Yin X, Shen J, Huang S, Wang Q. The role of copper homeostasis and cuproptosis in cerebrovascular diseases:A novel therapeutic target. Eur J Pharmacol 2025; 1001:177649. [PMID: 40320113 DOI: 10.1016/j.ejphar.2025.177649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 06/02/2025]
Abstract
Copper has a broad and important role in biological systems, where it acts as a cofactor at the active sites of a variety of enzymes and is involved in a wide range of physiological activities such as oxidative stress, lipid metabolism, and energy metabolism. Like other trace elements, copper levels maintain a balanced homeostasis in the body, and imbalances in copper homeostasis and cuproptosis it induces are involved in the progression of a range of diseases, such as cerebrovascular diseases (CVDs), including atherosclerosis (AS), hypertension, and stroke. Therefore, a deeper understanding of the relationship between copper and cerebrovascular pathologies may unearth more effective therapeutic strategies that can be effectively applied in the clinic. In this paper, we will briefly describe the process of copper metabolism and cuproptosis, and analyze how copper acts in CVDs from multiple perspectives, to further deepen the understanding of copper metabolism and provide new ideas for the treatment of CVDs.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Mengmeng Hao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hongying Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xuanying Yin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jiangang Shen
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China.
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
2
|
Ma Z, Pan H, Bi R, Li Z, Lu W, Wan P. Systematic review of repetitive transcranial magnetic stimulation for post-stroke hemiplegic shoulder pain. Neurol Sci 2025; 46:2007-2017. [PMID: 39745590 PMCID: PMC12003621 DOI: 10.1007/s10072-024-07961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/17/2024] [Indexed: 04/17/2025]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has shown potential in alleviating hemiplegic shoulder pain (HSP) and improving upper limb function, yet its efficacy remains debated. This study aims to assess the effectiveness of rTMS for HSP through a systematic review and meta-analysis. METHODS Four databases were searched with the keywords "rTMS" and "HSP". Adults aged 18 years and older with post-stroke HSP were included. The primary outcomes were pain scores and upper limb function scores, and the secondary outcomewas the incidence of adverse events. The risk of bias was assessed through the ROB tool in Review Manager 5.4.1, and statistical analysis was primarily conducted through this software. RESULTS A total of 52 articles were identified from PubMed, Embase, Cochrane Library, and CNKI. Following literature screening, 11 studies were included in the analysis. The quality of the included studies was moderate.The studies encompassed 584 patients with post-stroke HSP and their average age was 62. The analysis revealed that rTMSwas significantly more effective in relieving pain compared to the control group (SMD = -1.14, p < 0.01), and low-frequency rTMSwas superior to high-frequency rTMS. In terms of improving upper limb function, rTMSwas also significantly more efficacious compared to the control group (SMD = 2.20, p < 0.01), and low-frequency and high-intensity rTMSwere more beneficial. CONCLUSIONS This study highlights the potential efficacy of rTMS. However, the heterogeneity among included studies, limited sample sizes, and lack of long-term follow-up data restrict the generalizability of the results.
Collapse
Affiliation(s)
- Zhenchao Ma
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huijuan Pan
- Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, 200023, China
| | - Ranran Bi
- Department of Rehabilitation Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhenhua Li
- Department of Rehabilitation Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Weichen Lu
- Department of Rehabilitation Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ping Wan
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- , No.1200 Cailun Road, Pudong New Area, Shanghai, 10124, China.
| |
Collapse
|
3
|
Rroji O, Mucignat C. Factors influencing brain recovery from stroke via possible epigenetic changes. Future Sci OA 2024; 10:2409609. [PMID: 39429231 PMCID: PMC11497982 DOI: 10.1080/20565623.2024.2409609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: To examine epigenetic changes leading to functional repair after damage to the central motor system.Data sources: A literature search was conducted using medical and health science electronic databases (PubMed, MEDLINE, Scopus) up to July 2023.Study selection: Data were summarized for type of intervention, study design, findings including human and animal studies.Data extraction: Data were extracted and double-checked independently for methodological quality. By means of the influence of environmental (calorie restriction or physical exercise) and other factors, epigenetic instructions were found to increase levels of BDNF and enhance synaptic neurotransmission, possibly leading to larger scale changes in structural and functional assets, which may end up to cognitive and motor repair after stroke.
Collapse
Affiliation(s)
- Orjon Rroji
- Department of Radiology & Imaging techniques, European University of Tirana, Albania
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Italy
- National Institute for Biostructures & Biosystems, Rome, Italy
| |
Collapse
|
4
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
5
|
Pan LJ, Zhu HQ, Zhang XA, Wang XQ. The mechanism and effect of repetitive transcranial magnetic stimulation for post-stroke pain. Front Mol Neurosci 2023; 15:1091402. [PMID: 36683849 PMCID: PMC9855274 DOI: 10.3389/fnmol.2022.1091402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 01/08/2023] Open
Abstract
Post-stroke pain (PSP) is a common complication after stroke and affects patients' quality of life. Currently, drug therapy and non-invasive brain stimulation are common treatments for PSP. Given the poor efficacy of drug therapy and various side effects, non-invasive brain stimulation, such as repetitive transcranial magnetic stimulation (rTMS), has been accepted by many patients and attracted the attention of many researchers because of its non-invasive and painless nature. This article reviews the therapeutic effect of rTMS on PSP and discusses the possible mechanisms. In general, rTMS has a good therapeutic effect on PSP. Possible mechanisms of its analgesia include altering cortical excitability and synaptic plasticity, modulating the release of related neurotransmitters, and affecting the structural and functional connectivity of brain regions involved in pain processing and modulation. At present, studies on the mechanism of rTMS in the treatment of PSP are lacking, so we hope this review can provide a theoretical basis for future mechanism studies.
Collapse
Affiliation(s)
- Long-Jin Pan
- College of Kinesiology, Shenyang Sport University, Shenyang, China,Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui-Qi Zhu
- College of Kinesiology, Shenyang Sport University, Shenyang, China,Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China,*Correspondence: Xin-An Zhang ✉
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China,Xue-Qiang Wang ✉
| |
Collapse
|
6
|
Alpha-Lipoic Acid as an Antioxidant Strategy for Managing Neuropathic Pain. Antioxidants (Basel) 2022; 11:antiox11122420. [PMID: 36552628 PMCID: PMC9774895 DOI: 10.3390/antiox11122420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain (NP) is the most prevalent and debilitating form of chronic pain, caused by injuries or diseases of the somatosensory system. Since current first-line treatments only provide poor symptomatic relief, the search for new therapeutic strategies for managing NP is an active field of investigation. Multiple mechanisms contribute to the genesis and maintenance of NP, including damage caused by oxidative stress. The naturally occurring antioxidant alpha-lipoic acid (ALA) is a promising therapeutic agent for the management of NP. Several pre-clinical in vitro and in vivo studies as well as clinical trials demonstrate the analgesic potential of ALA in the management of NP. The beneficial biological activities of ALA are reflected in the various patents for the development of ALA-based innovative products. This review demonstrates the therapeutic potential of ALA in the management of NP by discussing its analgesic effects by multiple antioxidant mechanisms as well as the use of patented ALA-based products and how technological approaches have been applied to enhance ALA's pharmacological properties.
Collapse
|
7
|
Ma Y, Luo J, Wang XQ. The effect and mechanism of exercise for post-stroke pain. Front Mol Neurosci 2022; 15:1074205. [PMID: 36533131 PMCID: PMC9755671 DOI: 10.3389/fnmol.2022.1074205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 08/30/2023] Open
Abstract
One of the common negative effects of a stroke that seriously lowers patients' quality of life is post-stroke pain (PSP). Thus, exercise in PSP management has become a hot research topic. The main advantages of exercise therapy are affordability and ease of acceptance by patients compared to other treatment methods. Therefore, this article reviews the effectiveness and possible mechanisms of exercise interventions for PSP. Exercise training for patients with PSP not only improves physical function but also effectively reduces pain intensity and attenuates the behavioral response to pain. In addition, exercise therapy can improve brain function and modulate levels of pro-inflammatory and neurotrophic factors to exert specific analgesic effects. Potential mechanisms for exercise intervention include modulation of synaptic plasticity in the anterior cingulate gyrus, modulation of endogenous opioids in vivo, reversal of brain-derived neurotrophic factor overexpression, inhibition of purinergic receptor (P2X4R, P2X7R) expression, and inhibition of microglia activation. However, current research on exercise for PSP remains limited, and the sustainable benefits of exercise interventions for PSP need to be further investigated.
Collapse
Affiliation(s)
- Yue Ma
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Jing Luo
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
8
|
Robayo LE, Govind V, Vastano R, Felix ER, Fleming L, Cherup NP, Widerström-Noga E. Multidimensional pain phenotypes after Traumatic Brain Injury. FRONTIERS IN PAIN RESEARCH 2022; 3:947562. [PMID: 36061413 PMCID: PMC9437424 DOI: 10.3389/fpain.2022.947562] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
More than 50% of individuals develop chronic pain following traumatic brain injury (TBI). Research suggests that a significant portion of post-TBI chronic pain conditions is neuropathic in nature, yet the relationship between neuropathic pain, psychological distress, and somatosensory function following TBI is not fully understood. This study evaluated neuropathic pain symptoms, psychological and somatosensory function, and psychosocial factors in individuals with TBI (TBI, N = 38). A two-step cluster analysis was used to identify phenotypes based on the Neuropathic Pain Symptom Inventory and Beck's Anxiety Inventory scores. Phenotypes were then compared on pain characteristics, psychological and somatosensory function, and psychosocial factors. Our analyses resulted in two different neuropathic pain phenotypes: (1) Moderate neuropathic pain severity and anxiety scores (MNP-AS, N = 11); and (2) mild or no neuropathic pain symptoms and anxiety scores (LNP-AS, N = 27). Furthermore, the MNP-AS group exhibited greater depression, PTSD, pain severity, and affective distress scores than the LNP-AS group. In addition, thermal somatosensory function (difference between thermal pain and perception thresholds) was significantly lower in the MNP-AS compared to the LNP-AS group. Our findings suggest that neuropathic pain symptoms are relatively common after TBI and are not only associated with greater psychosocial distress but also with abnormal function of central pain processing pathways.
Collapse
Affiliation(s)
- Linda E. Robayo
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
| | - Varan Govind
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberta Vastano
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Elizabeth R. Felix
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Loriann Fleming
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicholas P. Cherup
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eva Widerström-Noga
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Eva Widerström-Noga
| |
Collapse
|
9
|
Hsu CY, Sheu WHH, Lee IT. Brain-Derived Neurotrophic Factor Reduces Long-Term Mortality in Patients With Coronary Artery Disease and Chronic Kidney Disease. Front Cardiovasc Med 2022; 9:881441. [PMID: 35800175 PMCID: PMC9253370 DOI: 10.3389/fcvm.2022.881441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Chronic kidney disease (CKD) is a risk factor for coronary artery disease (CAD). We examined the effects of circulating brain-derived neurotrophic factor (BDNF) on long-term mortality in patients with CAD and CKD. Materials and Methods We enrolled patients with established CAD in the present study. Serum BDNF and estimated glomerular filtration rate (eGFR) were assessed after overnight fasting. All-cause mortality served as the primary endpoint. Results All 348 enrolled patients were divided into four groups according to their median BDNF level and CKD status, defined according to eGFR <60 mL/min/1.73 m2. Forty-five patients reached the primary endpoint during the median follow-up time of 6.0 years. Kaplan-Meier survival analysis indicated that the group with low BDNF and CKD had a significantly higher mortality rate than the other three groups (log-rank test p < 0.001). Compared to the high BDNF without CKD group, the low BDNF with CKD group had a hazard ratio (HR) of 3.186 [95% confidence interval (CI): 1.482–6.846] for all-cause mortality according to the multivariable Cox proportional hazard regression analysis after adjusting for age and urine albumin-creatinine ratio (p = 0.003). Furthermore, there was a significantly interactive effect between BDNF and CKD status on the risk of the primary endpoint (odds ratio = 6.413, 95% CI: 1.497–27.47 in the multivariable logistic regression model and HR = 3.640, 95% CI: 1.006–13.173 in the Cox regression model). Conclusion We observed a synergistic effect between low serum BDNF levels and CKD on the prediction of all-cause mortality in patients with CAD.
Collapse
Affiliation(s)
- Cheng-Yueh Hsu
- Master of Public Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wayne Huey-Herng Sheu
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Te Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- *Correspondence: I-Te Lee,
| |
Collapse
|
10
|
Mojtabavi H, Shaka Z, Momtazmanesh S, Ajdari A, Rezaei N. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: a systematic review and meta-analysis. J Transl Med 2022; 20:126. [PMID: 35287688 PMCID: PMC8919648 DOI: 10.1186/s12967-022-03312-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Background Stroke, an acute cerebrovascular event, is a leading cause of disability, placing a significant psycho-socioeconomic burden worldwide. The adaptation and reorganization process following any neuronal damage is regarded as neuroplasticity. Among many factors believed to attribute to this process, Brain-derived Neurotrophic Factor (BDNF) is a neurotrophin coordinating neuroplasticity after various neurological disorders such as stroke. Methods We conducted a systematic search in the main electronic medical databases in January 2021. Primarily we want to compare BDNF levels between patients with stroke and healthy controls (HC). Additional aims included investigation of (1) longitudinal changes in the BDNF levels post-stroke, (2) effects of physical training, (3) repeated transcranial magnetic stimulation (rTMS), and presence of depression on BDNF levels in patients with stroke. Results Among 6243 reviewed records from PubMed, Web of Science, and Scopus, 62 studies were eligible for inclusion in our systematic review. Subjects with stroke, n = 1856, showed lower BDNF levels compared to HC, n = 1191 (SMD [95%CI] = − 1.04 [− 1.49 to − 0.58]). No significant difference was detected in the level of BDNF through time points past stroke. BDNF levels were lower in the patients with depression compared to non-depressed subjects (SMD [95%CI] = − 0.60 [− 1.10 to − 0.10]). Physical training had an immediate positive effect on the BDNF levels and not statistically significant effect in the long term; SMD [95%CI] = 0.49 [0.09 to 0.88]) and SMD [95%CI] = 0.02 [− 0.43 to 0.47]). Lastly, rTMS showed no effect on the level of BDNF with 0.00 SMD. Conclusions Our study confirms that stroke significantly decreases the level of BDNF in various domains such as cognition, affect, and motor function. As BDNF is the major representative of neuroplasticity within nervous system, it is believed that stroke has a significant impact on the CNS regeneration, which is permanent if left untreated. This effect is intensified with coexisting conditions such as depression which further decrease the BDNF level but the net impact yet needs to be discovered. We also conclude that exercise and some interventions such as different medications could effectively reverse the damage but further studies are crucial to reach the exact modality and dosage for their optimal effect. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03312-y.
Collapse
|
11
|
Pastorino R, Loreti C, Giovannini S, Ricciardi W, Padua L, Boccia S. Challenges of Prevention for a Sustainable Personalized Medicine. J Pers Med 2021; 11:jpm11040311. [PMID: 33923579 PMCID: PMC8073054 DOI: 10.3390/jpm11040311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
The development and implementation of the approaches of personalized medicine for disease prevention are still at infancy, although preventive activities in healthcare represent a key pillar to guarantee health system sustainability. There is an increasing interest in finding informative markers that indicate the disease risk before the manifestation of the disease (primary prevention) or for early disease detection (secondary prevention). Recently, the systematic collection and study of clinical phenotypes and biomarkers consented to the advance of Rehabilomics in tertiary prevention. It consents to identify relevant molecular and physiological factors that can be linked to plasticity, treatment response, and natural recovery. Implementation of these approaches would open avenues to identify people at high risk and enable new preventive lifestyle interventions or early treatments targeted to their individual genomic profile, personalizing prevention and rehabilitation. The integration of personalized medicine into prevention may benefit citizens, patients, healthcare professionals, healthcare authorities, and industry, and ultimately will seek to contribute to better health and quality of life for Europe’s citizens.
Collapse
Affiliation(s)
- Roberta Pastorino
- Department of Woman and Child Health and Public Health—Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (R.P.); (S.B.)
| | - Claudia Loreti
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (L.P.)
- Correspondence:
| | - Silvia Giovannini
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (L.P.)
| | - Walter Ricciardi
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Luca Padua
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (L.P.)
- Dipartimento di Scienze Geriatriche e Ortopediche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefania Boccia
- Department of Woman and Child Health and Public Health—Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (R.P.); (S.B.)
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
12
|
Wang Z, Li H. Serum brain-derived neurotrophic factor levels in patients with diabetic neuropathic pain. Neurosci Lett 2021; 752:135655. [PMID: 33485990 DOI: 10.1016/j.neulet.2021.135655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Diabetic neuropathic pain (DNP) is one of the most common and severe complications in patients with diabetes. This study aimed to investigate serum brain-derived neurotrophic factor (BDNF) levels in patients with DNP and to evaluate the association between BDNF and disease severity. METHODS A total of 143 T2DM patients were included, according to clinical characteristics and douleur neuropathique 4 (DN4) questionnaire are divided into the DNP group (n = 78) and without the DNP group (n = 65). BDNF levels were measured by an enzyme-linked immunosorbent assay. Additionally, other biochemical characteristics were measured using routine laboratory methods. RESULTS Serum levels of BDNF was increased significantly in the DNP group compared to without DNP group. Meanwhile, a binary logistic regression model identified as revealed BDNF (OR = 1.178, 95 %CI = 1.064-1.305,p = 0.002) was a risk factor in T2DM patients. Furthermore, the serum BDNF levels positively correlated with VAS score in the DNP patients. CONCLUSIONS Serum BDNF was elevated in DNP patients and increased gradually with the VAS score. BDNF was identified as risk factors for pain in all T2DM patients.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
13
|
|
14
|
Guo X, Tao X, Tong Q, Li T, Dong D, Zhang B, Zhao M, Song T. Impaired AMPK‑CGRP signaling in the central nervous system contributes to enhanced neuropathic pain in high‑fat diet‑induced obese rats, with or without nerve injury. Mol Med Rep 2019; 20:1279-1287. [PMID: 31173269 PMCID: PMC6625401 DOI: 10.3892/mmr.2019.10368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/10/2019] [Indexed: 12/27/2022] Open
Abstract
Obesity is associated with increased sensitivity to pain, including neuropathic pain, but the precise mechanisms are not fully understood. Recent evidence has revealed that AMP-activated protein kinase (AMPK) in the central nervous system (CNS) regulates the neuropeptide calcitonin gene-related peptide (CGRP), a principal neurotransmitter of the class C nerve fiber, which serves an important role in initiating and maintaining neuropathic pain. AMPK has been demonstrated to be downregulated in the CNS in obesity. The present study hypothesized that obesity may lead to increased sensitivity to neuropathic pain by downregulating AMPK and upregulating CGRP expression levels in the CNS. Sprague-Dawley rats consuming a high-fat diet (HF) for 12 weeks developed obesity; they exhibited significantly decreased levels of phospho (p)-AMPK and increased CGRP expression levels in the spinal cord (SC) and dorsal root ganglion (DRG), respectively, compared with rats consuming a low-fat (LF) diet. HF-fed rats that underwent spared nerve injury (SNI) also exhibited lower p-AMPK and higher CGRP expression levels in the SC and DRG, compared with the corresponding LF-diet rats. The 50% paw withdrawal threshold (PWT; as measured by Von Frey testing) was significantly lower in HF-fed compared with LF-fed rats, with or without SNI. Through intrathecal treatment, the AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR) or the CGRP antagonist CGRP8-37 decreased CGRP expression levels and increased the 50% PWT; however, the AMPK inhibitor dorsomorphin augmented CGRP expression levels and further reduced the 50% PWT in HF-fed rats, but not LF-fed rats, with or without SNI. The results indicated that blocking the AMPK-CGRP pathway may enhance neuropathic pain in HF-induced obesity, with or without nerve injury. Targeting AMPK in the CNS may be a novel strategy for the prevention and treatment of obesity-associated neuropathic pain.
Collapse
Affiliation(s)
- Xinxin Guo
- Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xueshu Tao
- Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Qing Tong
- Department of Scientific Research, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Tiecheng Li
- Department of Anesthesiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Daosong Dong
- Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Bohan Zhang
- Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Mengnan Zhao
- Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Tao Song
- Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
15
|
Huțanu A, Iancu M, Maier S, Bălaşa R, Dobreanu M. Plasma Biomarkers as Potential Predictors of Functional Dependence in Daily Life Activities after Ischemic Stroke: A Single Center Study. Ann Indian Acad Neurol 2019; 23:496-503. [PMID: 33223667 PMCID: PMC7657279 DOI: 10.4103/aian.aian_74_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Objective: Despite advances made in the treatment of ischemic stroke, it still remains one of the leading causes of mortality and disability worldwide. The main objective of this study was to identify from a panel of 10 inflammatory markers and chemokines those biomarkers that have a potential predictive role in the evolution of disability and functional dependence in daily activities after an ischemic stroke. Methods: The study included 116 patients with ischemic stroke and 40 healthy volunteers matched for gender and age. Stroke severity was assessed by the National Institute of Health Stroke Scale (NIHSS) on admission and during hospitalization and functional mobility in daily activities by Barthel index (BI). Multiplex panel with 10 biomarkers [brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF)-AA, PDGF-AB/BB, neural cell adhesion molecule (NCAM), cathepsin D, soluble vascular cell adhesion molecule (sVCAM), soluble intercellular cell adhesion molecule (sICAM), myeloperoxidase (MPO), regulated on activation, normal T cell expressed and secreted (RANTES), plasminogen activator inhibitor (PAI)-1] was analyzed on days 1 and 5 after admission using the xMAP technology. Results: Plasma concentrations of RANTES and NCAM were significantly lower in patients with ischemic stroke compared with healthy controls, while MPO and sICAM were significantly higher in patients versus controls. Plasma concentrations of sICAM, sVCAM, and RANTES significantly decreased during the analyzed period. For the first-day measurement, the bivariate analysis revealed the association of NIHSS on admission with sVCAM, and on discharge negative association with PDGF-AA, PDGR-AB/BB, BDNF, and RANTES. Plasma levels of PDGF-AA, PDGF-AB/BB, BDNF, and RANTES were found to be significantly lower in patients with BI ≤ 80, on day 5 after disease onset. PDGF-AA, PDGF-AB/BB, and BDNF were univariate and multivariate predictors for functional dependence in daily life activity (BI ≤ 80), having a protective effect (odds ratio < 1). Conclusion: Plasma levels of BDNF, PDGF-AA, and PDGF-AB/BB are independent predictors for functional dependency in daily life activities and may be useful prognostic markers in the evaluation of ischemic stroke patients.
Collapse
Affiliation(s)
- Adina Huțanu
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Sciences and Technology Tîrgu-Mureş, Romania.,Department of Laboratory Medicine, University of Medicine, Pharmacy, Sciences and Technology Tîrgu-Mureş, Romania
| | - Mihaela Iancu
- University of Medicine and Pharmacy "Iuliu Hațieganu", Department of Medical Informatics and Biostatistics, Cluj-Napoca, Romania
| | - Smaranda Maier
- Department of Neurology, Clinic, Emergency County Hospital Targu Mures, University of Medicine, Pharmacy, Sciences and Technology Tîrgu Mureş
| | - Rodica Bălaşa
- Department of Neurology, Clinic, Emergency County Hospital Targu Mures, University of Medicine, Pharmacy, Sciences and Technology Tîrgu Mureş
| | - Minodora Dobreanu
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Sciences and Technology Tîrgu-Mureş, Romania.,Department of Laboratory Medicine, University of Medicine, Pharmacy, Sciences and Technology Tîrgu-Mureş, Romania
| |
Collapse
|
16
|
Siotto M, Filippi MM, Simonelli I, Landi D, Ghazaryan A, Vollaro S, Ventriglia M, Pasqualetti P, Rongioletti MCA, Squitti R, Vernieri F. Oxidative Stress Related to Iron Metabolism in Relapsing Remitting Multiple Sclerosis Patients With Low Disability. Front Neurosci 2019; 13:86. [PMID: 30804745 PMCID: PMC6378854 DOI: 10.3389/fnins.2019.00086] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
Oxidative status may play a role in chronic inflammation and neurodegeneration which are considered critical etiopathogenetic factors in Multiple Sclerosis (MS), both in the early phase of the disease and in the progressive one. The aim of this study is to explore oxidative status related to iron metabolism in peripheral blood of stable Relapsing-Remitting MS with low disability. We studied 60 Relapsing-Remitting MS patients (age 37.2 ± 9.06, EDSS median 1.0), and 40 healthy controls (age 40.3 ± 10.86). We measured total hydroperoxides (dROMs test) and Total Antioxidant Status (TAS), along with the iron metabolism biomarkers: Iron (Fe), ferritin (Ferr), transferrin (Tf), transferrin saturation (Tfsat), and ceruloplasmin (Cp) panel biomarkers [concentration (iCp) and enzymatic activity (eCp), copper (Cu), ceruloplasmin specific activity (eCp:iCp), copper to ceruloplasmin ratio (Cu:Cp), non-ceruloplasmin copper (nCp-Cu)]. We computed also the Cp:Tf ratio as an index of oxidative stress related to iron metabolism. We found lower TAS levels in MS patients than in healthy controls (CTRL) and normal reference level and higher dROMs and Cp:Tf ratio in MS than in healthy controls. Cp and Cu were higher in MS while biomarkers of iron metabolism were not different between patients and controls. Both in controls and MS, dROMs correlated with iCp (CTRL r = 0.821, p < 0.001; MS r = 0.775 p < 0.001) and eCp (CTRL r = 0.734, p < 0.001; MS r = 0.820 p < 0.001). Moreover, only in MS group iCp correlated negatively with Tfsat (r = -0.257, p = 0.047). Dividing MS patients in “untreated” group and “treated” group, we found a significant difference in Fe values [F(2, 97) = 10.136, p < 0.001]; in particular “MS untreated” showed higher mean values (mean = 114.5, SD = 39.37 μg/dL) than CTRL (mean 78.6, SD = 27.55 μg/dL p = 0.001) and “MS treated” (mean = 72.4, SD = 38.08 μg/dL; p < 0.001). Moreover, “MS untreated” showed significantly higher values of Cp:Tf (mean = 10.19, SD = 1.77∗10-2; p = 0.015), than CTRL (mean = 9.03, SD = 1.46 ∗10-2). These results suggest that chronic oxidative stress is relevant also in the remitting phase of the disease in patients with low disability and short disease duration. Therefore, treatment with antioxidants may be beneficial also in the early stage of the disease to preserve neuronal reserve.
Collapse
Affiliation(s)
| | | | - Ilaria Simonelli
- Service of Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Anna Ghazaryan
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy.,Neurology Unit, Campus Bio-Medico University of Rome, Rome, Italy
| | - Stefano Vollaro
- Neurology Unit, Campus Bio-Medico University of Rome, Rome, Italy
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Patrizio Pasqualetti
- Service of Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Mauro Ciro Antonio Rongioletti
- Department of Laboratory Medicine, Research and Development Division, "San Giovanni Calibita", Fatebenefratelli Hospital, Rome, Italy
| | - Rosanna Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | |
Collapse
|