1
|
Kraus A, Dohm K, Borgers T, Goltermann J, Grotegerd D, Winter A, Thiel K, Flinkenflügel K, Schürmeyer N, Hahn T, Langer S, Kircher T, Nenadić I, Straube B, Jamalabadi H, Alexander N, Jansen A, Stein F, Brosch K, Usemann P, Teutenberg L, Thomas-Odenthal F, Meinert S, Dannlowski U. Brain structural correlates of an impending initial major depressive episode. Neuropsychopharmacology 2025:10.1038/s41386-025-02075-6. [PMID: 40074869 DOI: 10.1038/s41386-025-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Neuroimaging research has yet to elucidate whether reported gray matter volume (GMV) alterations in major depressive disorder (MDD) exist already before the onset of the first episode. Recruitment of presently healthy individuals with a subsequent transition to MDD (converters) is extremely challenging but crucial to gain insights into neurobiological vulnerability. Hence, we compared converters to patients with MDD and sustained healthy controls (HC) to distinguish pre-existing neurobiological markers from those emerging later in the course of depression. Combining two clinical cohorts (n = 1709), voxel-based morphometry was utilized to analyze GMV of n = 45 converters, n = 748 patients with MDD, and n = 916 HC in a region-of-interest approach and exploratory whole-brain. By contrasting the subgroups and considering both remission state and reported recurrence at a 2-year clinical follow-up, we stepwise disentangled effects of (1) vulnerability, (2) the acute depressive state, and (3) an initial vs. a recurrent episode. Analyses revealed higher amygdala GMV in converters relative to HC (ptfce-FWE = 0.037, d = 0.447) and patients (ptfce-FWE = 0.005, d = 0.508), remaining significant when compared to remitted patients with imminent recurrence. Lower GMV in the dorsolateral prefrontal cortex (ptfce-FWE < 0.001, d = 0.188) and insula (ptfce-FWE = 0.010, d = 0.186) emerged in patients relative to HC but not to converters, driven by patients with acute MDD. By examining one of the largest available converter samples in psychiatric neuroimaging, this study allowed a first determination of neural markers for an impending initial depressive episode. Our findings suggest a temporary vulnerability, which in combination with other common risk factors might facilitate prediction and in turn improve prevention of depression.
Collapse
Affiliation(s)
- Anna Kraus
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Navid Schürmeyer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Simon Langer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
- Institute for Translational Neuroscience, University of Münster, Münster, Germany.
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Yasuda Y, Ito S, Matsumoto J, Okada N, Onitsuka T, Ikeda M, Kushima I, Sumiyoshi C, Fukunaga M, Nemoto K, Miura K, Hashimoto N, Ohi K, Takahashi T, Sasabayashi D, Koeda M, Yamamori H, Fujimoto M, Takano H, Hasegawa N, Narita H, Yamamoto M, Tha KK, Kikuchi M, Kamishikiryo T, Itai E, Okubo Y, Tateno A, Nakamura M, Kubota M, Igarashi H, Hirano Y, Okada G, Miyata J, Numata S, Abe O, Yoshimura R, Nakagawa S, Yamasue H, Ozaki N, Kasai K, Hashimoto R. Proposal for a Novel Classification of Patients With Enlarged Ventricles and Cognitive Impairment Based on Data-Driven Analysis of Neuroimaging Results in Patients With Psychiatric Disorders. Neuropsychopharmacol Rep 2025; 45:e70010. [PMID: 40011069 PMCID: PMC11864853 DOI: 10.1002/npr2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
One of the challenges in diagnosing psychiatric disorders is that the results of biological and neuroscience research are not reflected in the diagnostic criteria. Thus, data-driven analyses incorporating biological and cross-disease perspectives, regardless of the diagnostic category, have recently been proposed. A data-driven clustering study based on subcortical volumes in 5604 subjects classified into four brain biotypes associated with cognitive/social functioning. Among the four brain biotypes identified in controls and patients with schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, and other psychiatric disorders, we further analyzed the brain biotype 1 subjects, those with an extremely small limbic region, for clinical utility. We found that the representative feature of brain biotype 1 is enlarged lateral ventricles. An enlarged ventricle, defined by an average z-score of left and right lateral ventricle volumes > 3, had a sensitivity of 99.1% and a specificity of 98.1% for discriminating brain biotype 1. However, the presence of an enlarged ventricle was not sufficient to classify patient subgroups, as 1% of the controls also had enlarged ventricles. Reclassification of patients with enlarged ventricles according to cognitive impairment resulted in a stratified subgroup that included patients with a high proportion of schizophrenia diagnoses, electroencephalography abnormalities, and rare pathological genetic copy number variations. Data-driven clustering analysis of neuroimaging data revealed subgroups with enlarged ventricles and cognitive impairment. This subgroup could be a new diagnostic candidate for psychiatric disorders. This concept and strategy may be useful for identifying biologically defined psychiatric disorders in the future.
Collapse
Grants
- 18-IMS-C162 The computation was performed using Research Center for Computational Science, Okazaki, Japan (Project: NIPS)
- 19-IMS-C181 The computation was performed using Research Center for Computational Science, Okazaki, Japan (Project: NIPS)
- 20-IMS-C162 The computation was performed using Research Center for Computational Science, Okazaki, Japan (Project: NIPS)
- 21-IMS-C179 The computation was performed using Research Center for Computational Science, Okazaki, Japan (Project: NIPS)
- 22-IMS-C195 The computation was performed using Research Center for Computational Science, Okazaki, Japan (Project: NIPS)
- UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM, KK)
- JP18K07550 Japan Society for the Promotion of Science
- JP19H05467 Japan Society for the Promotion of Science
- JP20H03611 Japan Society for the Promotion of Science
- JP20K06920 Japan Society for the Promotion of Science
- JP20KK0193 Japan Society for the Promotion of Science
- JP21H00194 Japan Society for the Promotion of Science
- JP21H02851 Japan Society for the Promotion of Science
- JP21H05171 Japan Society for the Promotion of Science
- JP21H05174 Japan Society for the Promotion of Science
- JP21K07543 Japan Society for the Promotion of Science
- JP22H04926 Japan Society for the Promotion of Science
- JP23H00395 Japan Society for the Promotion of Science
- JP23H02834 Japan Society for the Promotion of Science
- JP23K07001 Japan Society for the Promotion of Science
- National Institute for Physiological Sciences
- JPMJMS2021 Moonshot Research and Development Program
- 2019 SIRS Research Fund Award
- the International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS, KK)
- Intramural Research Grant (3-1, 4-6) for Neurological and Psychiatric Disorders of NCNP
- JP18dm0307002 Japan Agency for Medical Research and Development
- JP19dm0207069 Japan Agency for Medical Research and Development
- JP21dk0307103 Japan Agency for Medical Research and Development
- JP21km0405216 Japan Agency for Medical Research and Development
- JP21uk1024002 Japan Agency for Medical Research and Development
- JP21wm0425007 Japan Agency for Medical Research and Development
- JP21wm0425012 Japan Agency for Medical Research and Development
- JP22tm0424222 Japan Agency for Medical Research and Development
- 01412303 NINS program of Promoting Research by Networking among Institutions
- Japan Society for the Promotion of Science
- National Institute for Physiological Sciences
- Moonshot Research and Development Program
- Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Yuka Yasuda
- Life Grow Brilliant Mental ClinicMedical Corporation FosterOsakaOsakaJapan
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Satsuki Ito
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Junya Matsumoto
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
- International Research Center for Neurointelligence (WPI‐IRCN)The University of Tokyo Institutes for Advanced Study (UTIAS), The University of TokyoBunkyo‐kuTokyoJapan
| | | | - Masashi Ikeda
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Itaru Kushima
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaAichiJapan
- Medical Genomics CenterNagoya University HospitalNagoyaAichiJapan
| | - Chika Sumiyoshi
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryKodairaTokyoJapan
- Faculty of Human Development and CultureFukushima UniversityFukushimaFukushimaJapan
- Department of Preventive Intervention for Psychiatric DisordersNational Institute of Mental Health National Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Masaki Fukunaga
- Section of Brain Function InformationNational Institute for Physiological SciencesOkazakiAichiJapan
- Physiological Sciences ProgramThe Graduate University for Advanced StudiesOkazakiAichiJapan
| | - Kiyotaka Nemoto
- Department of PsychiatryInstitute of Medicine, University of TsukubaTsukubaIbarakiJapan
| | - Kenichiro Miura
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Naoki Hashimoto
- Department of PsychiatryHokkaido University Graduate School of MedicineSapporoHokkaidoJapan
| | - Kazutaka Ohi
- Department of PsychiatryGifu University Graduate School of MedicineGifuGifuJapan
- Department of General Internal MedicineKanazawa Medical UniversityUchinadaIshikawaJapan
| | - Tsutomu Takahashi
- Department of NeuropsychiatryUniversity of Toyama Graduate School of Medicine and Pharmaceutical SciencesToyamaToyamaJapan
- Research Center for Idling Brain ScienceUniversity of ToyamaToyamaToyamaJapan
| | - Daiki Sasabayashi
- Department of NeuropsychiatryUniversity of Toyama Graduate School of Medicine and Pharmaceutical SciencesToyamaToyamaJapan
- Research Center for Idling Brain ScienceUniversity of ToyamaToyamaToyamaJapan
| | - Michihiko Koeda
- Department of NeuropsychiatryNippon Medical School Tama Nagayama HospitalTamaTokyoJapan
- Department of Neuropsychiatry, Graduate School of MedicineNippon Medical SchoolBunkyo‐KuTokyoJapan
| | - Hidenaga Yamamori
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryKodairaTokyoJapan
- Department of PsychiatryOsaka University Graduate School of MedicineSuitaOsakaJapan
- Japan Community Health Care Organization Osaka HospitalOsakaOsakaJapan
| | - Michiko Fujimoto
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryKodairaTokyoJapan
- Department of PsychiatryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Harumasa Takano
- Department of Clinical NeuroimagingIntegrative Brain Imaging Center, National Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Naomi Hasegawa
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Hisashi Narita
- Department of Psychiatry and NeurologyHokkaido University HospitalSapporoHokkaidoJapan
| | - Maeri Yamamoto
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Khin Khin Tha
- Global Center for Biomedical Science and EngineeringHokkaido University Faculty of MedicineSapporoHokkaidoJapan
| | - Masataka Kikuchi
- Department of Computational Biology and Medical SciencesGraduate School of Frontier Science, the University of TokyoKashiwaChibaJapan
| | - Toshiharu Kamishikiryo
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaHiroshimaJapan
| | - Eri Itai
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaHiroshimaJapan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Graduate School of MedicineNippon Medical SchoolBunkyo‐KuTokyoJapan
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of MedicineNippon Medical SchoolBunkyo‐KuTokyoJapan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities ResearchShowa UniversitySetagayaTokyoJapan
| | - Manabu Kubota
- Department of Psychiatry, Graduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Hiroyuki Igarashi
- Department of Psychiatry, Graduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Yoji Hirano
- Division of Clinical Neuroscience, Department of Psychiatry, Faculty of MedicineUniversity of MiyazakiKiyotakeMiyazakiJapan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaHiroshimaJapan
| | - Jun Miyata
- Department of Psychiatry, Graduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
- Department of PsychiatryAichi Medical UniversityNagakuteAichiJapan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical ScienceTokushima UniversityTokushimaTokushimaJapan
| | - Osamu Abe
- Department of Radiology, Graduate School of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
| | - Reiji Yoshimura
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuFukuokaJapan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of NeuroscienceYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| | - Hidenori Yamasue
- Department of PsychiatryHamamatsu University School of MedicineHamamatsuShizuokaJapan
| | - Norio Ozaki
- Pathophysiology of Nagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
- International Research Center for Neurointelligence (WPI‐IRCN)The University of Tokyo Institutes for Advanced Study (UTIAS), The University of TokyoBunkyo‐kuTokyoJapan
- International Research Center for Neurointelligence (IRCN)Bunkyo‐kuTokyoJapan
| | - Ryota Hashimoto
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryKodairaTokyoJapan
| |
Collapse
|
3
|
Thanaraju A, Marzuki AA, Chan JK, Wong KY, Phon-Amnuaisuk P, Vafa S, Chew J, Chia YC, Jenkins M. Structural and functional brain correlates of socioeconomic status across the life span: A systematic review. Neurosci Biobehav Rev 2024; 162:105716. [PMID: 38729281 DOI: 10.1016/j.neubiorev.2024.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
It is well-established that higher socioeconomic status (SES) is associated with improved brain health. However, the effects of SES across different life stages on brain structure and function is still equivocal. In this systematic review, we aimed to synthesise findings from life course neuroimaging studies that investigated the structural and functional brain correlates of SES across the life span. The results indicated that higher SES across different life stages were independently and cumulatively related to neural outcomes typically reflective of greater brain health (e.g., increased cortical thickness, grey matter volume, fractional anisotropy, and network segregation) in adult individuals. The results also demonstrated that the corticolimbic system was most commonly impacted by socioeconomic disadvantages across the life span. This review highlights the importance of taking into account SES across the life span when studying its effects on brain health. It also provides directions for future research including the need for longitudinal and multimodal research that can inform effective policy interventions tailored to specific life stages.
Collapse
Affiliation(s)
- Arjun Thanaraju
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia.
| | - Aleya A Marzuki
- Department for Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Germany
| | - Jee Kei Chan
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Kean Yung Wong
- Sensory Neuroscience and Nutrition Lab, University of Otago, New Zealand
| | - Paveen Phon-Amnuaisuk
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Samira Vafa
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Yook Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Michael Jenkins
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Malaysia
| |
Collapse
|
4
|
Nogovitsyn N, Ballester P, Lasby M, Dunlop K, Ceniti AK, Squires S, Rowe J, Ho K, Suh J, Hassel S, Souza R, Casseb RF, Harris JK, Zamyadi M, Arnott SR, Strother SC, Hall G, Lam RW, Poppenk J, Lebel C, Bray S, Metzak P, MacIntosh BJ, Goldstein BI, Wang J, Rizvi SJ, MacQueen G, Addington J, Harkness KL, Rotzinger S, Kennedy SH, Frey BN. An empirical analysis of structural neuroimaging profiles in a staging model of depression. J Affect Disord 2024; 351:631-640. [PMID: 38290583 DOI: 10.1016/j.jad.2024.01.246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
We examine structural brain characteristics across three diagnostic categories: at risk for serious mental illness; first-presenting episode and recurrent major depressive disorder (MDD). We investigate whether the three diagnostic groups display a stepwise pattern of brain changes in the cortico-limbic regions. Integrated clinical and neuroimaging data from three large Canadian studies were pooled (total n = 622 participants, aged 12-66 years). Four clinical profiles were used in the classification of a clinical staging model: healthy comparison individuals with no history of depression (HC, n = 240), individuals at high risk for serious mental illness due to the presence of subclinical symptoms (SC, n = 80), first-episode depression (FD, n = 82), and participants with recurrent MDD in a current major depressive episode (RD, n = 220). Whole-brain volumetric measurements were extracted with FreeSurfer 7.1 and examined using three different types of analyses. Hippocampal volume decrease and cortico-limbic thinning were the most informative features for the RD vs HC comparisons. FD vs HC revealed that FD participants were characterized by a focal decrease in cortical thickness and global enlargement in amygdala volumes. Greater total amygdala volumes were significantly associated with earlier onset of illness in the FD but not the RD group. We did not confirm the construct validity of a tested clinical staging model, as a differential pattern of brain alterations was identified across the three diagnostic groups that did not parallel a stepwise clinical staging approach. The pathological processes during early stages of the illness may fundamentally differ from those that occur at later stages with clinical progression.
Collapse
Affiliation(s)
- Nikita Nogovitsyn
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Pedro Ballester
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Mike Lasby
- Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katharine Dunlop
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Amanda K Ceniti
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada
| | - Scott Squires
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Jessie Rowe
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Keith Ho
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada
| | - JeeSu Suh
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Roberto Souza
- Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Raphael F Casseb
- Neuroimaging Laboratory, University of Campinas, Campinas, SP, Brazil
| | | | - Mojdeh Zamyadi
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | | | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, ON, Canada
| | - Geoffrey Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jordan Poppenk
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Child & Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Signe Bray
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Child & Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Paul Metzak
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Bradley J MacIntosh
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Hurvitz Brain Sciences Program, Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Computational Radiology & Artificial Intelligence (CRAI) Unit, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry and Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - JianLi Wang
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sakina J Rizvi
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Glenda MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Susan Rotzinger
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada; Krembil Research Centre, University Health Network, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Sidney H Kennedy
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Krembil Research Centre, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
5
|
Moreira-Neto A, Neves LM, Miliatto A, Juday V, Marquesini R, Lafer B, Cardoso EF, Ugrinowitsch C, Nucci MP, Silva-Batista C. Clinical and neuroimaging correlates in a pilot randomized trial of aerobic exercise for major depression. J Affect Disord 2024; 347:591-600. [PMID: 38092282 DOI: 10.1016/j.jad.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/30/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Aerobic exercise (AE) combined with pharmacotherapy is known to reduce depressive symptoms; however, studies have not focused on long-term AE for volumetric changes of brain regions (amygdala, thalamus, and nucleus accumbens [NAcc]) linked to the control of affective responses and hopelessness in individuals with major depression (MD). In addition, AE with motor complexity (AEMC) would be more effective than AE in causing brain plasticity. We compared the effects of 24 weeks of AE and AEMC combined with pharmacotherapy on clinical and volumetric outcomes in individuals with MD. METHODS Forty medicated individuals with MD were randomly assigned to nonexercising control (C), AE, and AEMC groups. The training groups exercised for 60 min, twice a week for 24 weeks. Clinical and volumetric outcomes were assessed before and after the 24 weeks. Effect size (ES) and confidence interval (CI) were calculated for within-group and between-groups changes. RESULTS AE and AEMC reduced hopelessness (ES = -0.73 and ES = -0.62, respectively) and increased affective responses (ES = 1.24 and ES = 1.56, respectively). Only AE increased amygdala (ES = 0.27 left and ES = 0.34 right), thalamus (ES = 0.33 left and ES = 0.26 right) and left NAcc (ES = 0.54) volumes. AE was more effective than the C group in reducing hopelessness and causing brain plasticity. The changes in the right amygdala volume showed a strong trend in explaining 72 % of the changes in affective responses following AE (p = 0.06). LIMITATION Lack of posttraining follow-up and small sample size. CONCLUSION These preliminary data indicate that AE combined with pharmacotherapy can cause clinical improvement and brain plasticity in individuals with MD.
Collapse
Affiliation(s)
- Acácio Moreira-Neto
- Laboratory of Magnetic Resonance in Neuroradiology - LIM- 44, University of São Paulo Faculty of Medicine Clinics Hospital, São Paulo, Brazil; Exercise Neuroscience Research Group, University of São Paulo, São Paulo, Brazil
| | - Lucas Melo Neves
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Post-Graduate Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | - Angelo Miliatto
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo, Brazil
| | | | - Raquel Marquesini
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Beny Lafer
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Ellison Fernando Cardoso
- Laboratory of Magnetic Resonance in Neuroradiology - LIM- 44, University of São Paulo Faculty of Medicine Clinics Hospital, São Paulo, Brazil
| | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Mariana Penteado Nucci
- Laboratory of Magnetic Resonance in Neuroradiology - LIM- 44, University of São Paulo Faculty of Medicine Clinics Hospital, São Paulo, Brazil
| | - Carla Silva-Batista
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo, Brazil; Department of Neurology, Oregon Health & Science University, Portland, OR, United States of America
| |
Collapse
|
6
|
Yeske B, Hou J, Chu DY, Adluru N, Nair VA, Beniwal-Patel P, Saha S, Prabhakaran V. Structural brain morphometry differences and similarities between young patients with Crohn's disease in remission and healthy young and old controls. Front Neurosci 2024; 18:1210939. [PMID: 38356645 PMCID: PMC10864509 DOI: 10.3389/fnins.2024.1210939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Crohn's disease (CD), one of the main phenotypes of inflammatory bowel disease (IBD), can affect any part of the gastrointestinal tract. It can impact the function of gastrointestinal secretions, as well as increasing the intestinal permeability leading to an aberrant immunological response and subsequent intestinal inflammation. Studies have reported anatomical and functional brain changes in Crohn's Disease patients (CDs), possibly due to increased inflammatory markers and microglial cells that play key roles in communicating between the brain, gut, and systemic immune system. To date, no studies have demonstrated similarities between morphological brain changes seen in IBD and brain morphometry observed in older healthy controls.. Methods For the present study, twelve young CDs in remission (M = 26.08 years, SD = 4.9 years, 7 male) were recruited from an IBD Clinic. Data from 12 young age-matched healthy controls (HCs) (24.5 years, SD = 3.6 years, 8 male) and 12 older HCs (59 years, SD = 8 years, 8 male), previously collected for a different study under a similar MR protocol, were analyzed as controls. T1 weighted images and structural image processing techniques were used to extract surface-based brain measures, to test our hypothesis that young CDs have different brain surface morphometry than their age-matched young HCs and furthermore, appear more similar to older HCs. The phonemic verbal fluency (VF) task (the Controlled Oral Word Association Test, COWAT) (Benton, 1976) was administered to test verbal cognitive ability and executive control. Results/Discussion On the whole, CDs had more brain regions with differences in brain morphometry measures when compared to the young HCs as compared to the old HCs, suggesting that CD has an effect on the brain that makes it appear more similar to old HCs. Additionally, our study demonstrates this atypical brain morphometry is associated with function on a cognitive task. These results suggest that even younger CDs may be showing some evidence of structural brain changes that demonstrate increased resemblance to older HC brains rather than their similarly aged healthy counterparts.
Collapse
Affiliation(s)
- Benjamin Yeske
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jiancheng Hou
- Center for Cross-Straits Cultural Development, Fujian Normal University, Fuzhou City, Fujian, China
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel Y. Chu
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- The Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Veena A. Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Poonam Beniwal-Patel
- Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sumona Saha
- Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin- Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychology and Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
7
|
Brooks JO, Kruse JL, Kubicki A, Hellemann G, Espinoza RT, Irwin MR, Narr KL. Structural brain plasticity and inflammation are independently related to changes in depressive symptoms six months after an index ECT course. Psychol Med 2024; 54:108-116. [PMID: 36600668 PMCID: PMC11798564 DOI: 10.1017/s0033291722003555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is effective for treatment-resistant depression and leads to short-term structural brain changes and decreases in the inflammatory response. However, little is known about how brain structure and inflammation relate to the heterogeneity of treatment response in the months following an index ECT course. METHODS A naturalistic six-month study following an index ECT course included 20 subjects with treatment-resistant depression. Upon conclusion of the index ECT course and again after six months, structural magnetic resonance imaging scans and peripheral inflammation measures [interleukin-6 (IL-6), IL-8, tumor necrosis factor (TNF-α), and C-reactive protein] were obtained. Voxel-based morphometry processed with the CAT-12 Toolbox was used to estimate changes in gray matter volume. RESULTS Between the end of the index ECT course and the end of follow-up, we found four clusters of significant decreases in gray matter volume (p < 0.01, FWE) and no regions of increased volume. Decreased HAM-D scores were significantly related only to reduced IL-8 level. Decreased volume in one cluster, which included the right insula and Brodmann's Area 22, was related to increased HAM-D scores over six months. IL-8 levels did not mediate or moderate the relationship between volumetric change and depression. CONCLUSIONS Six months after an index ECT course, multiple regions of decreased gray matter volume were observed in a naturalistic setting. The independent relations between brain volume and inflammation to depressive symptoms suggest novel explanations of the heterogeneity of longer-term ECT treatment response.
Collapse
Affiliation(s)
- John O. Brooks
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer L. Kruse
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Antoni Kubicki
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | | | - Randall T. Espinoza
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Michael R. Irwin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Katherine L. Narr
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Zhang E, Hauson AO, Pollard AA, Meis B, Lackey NS, Carson B, Khayat S, Fortea L, Radua J. Lateralized grey matter volume changes in adolescents versus adults with major depression: SDM-PSI meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111691. [PMID: 37837793 DOI: 10.1016/j.pscychresns.2023.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 10/16/2023]
Abstract
The current study is the first meta-analysis to examine grey matter volume (GMV) changes in adolescents and across the lifespan in major depressive disorder (MDD). Seed-based d mapping-with permutation of subject images (SDM-PSI) has advantages over previous coordinate-based meta-analytical methods (CBMA), such as reducing bias (via the MetaNSUE algorithm) and including non-statistically significant unreported effects. SDM-PSI was used to analyze 105 whole-brain GMV voxel-based morphometry (VBM) studies comparing 6,530 individuals with MDD versus 6,821 age-matched healthy controls (HC). A laterality effect was observed in which adults with MDD showed lower GMV than adult HC in left fronto-temporo-parietal structures (superior temporal gyrus, insula, Rolandic operculum, and inferior frontal gyrus). However, these abnormalities were not statistically significant for adolescent MDD versus adolescent HC. Instead, adolescent MDD showed lower GMV than adult MDD in right temporo-parietal structures (angular gyrus and middle temporal gyrus). These regional differences may be used as potential biomarkers to predict and monitor treatment outcomes as well as to choose the most effective treatments in adolescents versus adults. Finally, due to the paucity of youth, older adult, and longitudinal studies, future studies should attempt to replicate these GMV findings and examine whether they correlate with treatment response and illness severity.
Collapse
Affiliation(s)
- Emily Zhang
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| | - Anna A Pollard
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Benjamin Meis
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Nicholas S Lackey
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Bryce Carson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Sarah Khayat
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Liu X, Klugah-Brown B, Zhang R, Chen H, Zhang J, Becker B. Pathological fear, anxiety and negative affect exhibit distinct neurostructural signatures: evidence from psychiatric neuroimaging meta-analysis. Transl Psychiatry 2022; 12:405. [PMID: 36151073 PMCID: PMC9508096 DOI: 10.1038/s41398-022-02157-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Internalizing disorders encompass anxiety, fear and depressive disorders, which exhibit overlap at both conceptual and symptom levels. Given that a neurobiological evaluation is lacking, we conducted a Seed-based D-Mapping comparative meta-analysis including coordinates as well as original statistical maps to determine common and disorder-specific gray matter volume alterations in generalized anxiety disorder (GAD), fear-related anxiety disorders (FAD, i.e., social anxiety disorder, specific phobias, panic disorder) and major depressive disorder (MDD). Results showed that GAD exhibited disorder-specific altered volumes relative to FAD including decreased volumes in left insula and lateral/medial prefrontal cortex as well as increased right putamen volume. Both GAD and MDD showed decreased prefrontal volumes compared to controls and FAD. While FAD showed less robust alterations in lingual gyrus compared to controls, this group presented intact frontal integrity. No shared structural abnormalities were found. Our study is the first to provide meta-analytic evidence for distinct neuroanatomical abnormalities underlying the pathophysiology of anxiety-, fear-related and depressive disorders. These findings may have implications for determining promising target regions for disorder-specific neuromodulation interventions (e.g. transcranial magnetic stimulation or neurofeedback).
Collapse
Affiliation(s)
- Xiqin Liu
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Benjamin Klugah-Brown
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Ran Zhang
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Huafu Chen
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Jie Zhang
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, 200433 Shanghai, P. R. China ,grid.8547.e0000 0001 0125 2443Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, 200433 Shanghai, P. R. China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
| |
Collapse
|
10
|
Lemke H, Klute H, Skupski J, Thiel K, Waltemate L, Winter A, Breuer F, Meinert S, Klug M, Enneking V, Winter NR, Grotegerd D, Leehr EJ, Repple J, Dohm K, Opel N, Stein F, Meller T, Brosch K, Ringwald KG, Pfarr JK, Thomas-Odenthal F, Hahn T, Krug A, Jansen A, Heindel W, Nenadić I, Kircher T, Dannlowski U. Brain structural correlates of recurrence following the first episode in patients with major depressive disorder. Transl Psychiatry 2022; 12:349. [PMID: 36030219 PMCID: PMC9420111 DOI: 10.1038/s41398-022-02113-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022] Open
Abstract
Former prospective studies showed that the occurrence of relapse in Major Depressive Disorder (MDD) is associated with volume loss in the insula, hippocampus and dorsolateral prefrontal cortex (DLPFC). However, these studies were confounded by the patient's lifetime disease history, as the number of previous episodes predict future recurrence. In order to analyze neural correlates of recurrence irrespective of prior disease course, this study prospectively examined changes in brain structure in patients with first-episode depression (FED) over 2 years. N = 63 FED patients and n = 63 healthy controls (HC) underwent structural magnetic resonance imaging at baseline and after 2 years. According to their disease course during the follow-up interval, patients were grouped into n = 21 FED patients with recurrence (FEDrec) during follow-up and n = 42 FED patients with stable remission (FEDrem). Gray matter volume changes were analysed using group by time interaction analyses of covariance for the DLPFC, hippocampus and insula. Significant group by time interactions in the DLPFC and insula emerged. Pairwise comparisons showed that FEDrec had greater volume decline in the DLPFC and insula from baseline to follow-up compared with FEDrem and HC. No group by time interactions in the hippocampus were found. Cross-sectional analyses at baseline and follow-up revealed no differences between groups. This longitudinal study provides evidence for neural alterations in the DLPFC and insula related to a detrimental course in MDD. These effects of recurrence are already detectable at initial stages of MDD and seem to occur without any prior disease history, emphasizing the importance of early interventions preventing depressive recurrence.
Collapse
Affiliation(s)
- Hannah Lemke
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Klute
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jennifer Skupski
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany ,grid.5949.10000 0001 2172 9288Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Melissa Klug
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils R. Winter
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Frederike Stein
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Kai G. Ringwald
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tim Hahn
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Andreas Jansen
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Walter Heindel
- grid.5949.10000 0001 2172 9288University Clinic for Radiology, University of Münster, Münster, Germany
| | - Igor Nenadić
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
11
|
Schaub N, Ammann N, Conring F, Müller T, Federspiel A, Wiest R, Hoepner R, Stegmayer K, Walther S. Effect of Season of Birth on Hippocampus Volume in a Transdiagnostic Sample of Patients With Depression and Schizophrenia. Front Hum Neurosci 2022; 16:877461. [PMID: 35769255 PMCID: PMC9234120 DOI: 10.3389/fnhum.2022.877461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Psychiatric disorders share an excess of seasonal birth in winter and spring, suggesting an increase of neurodevelopmental risks. Evidence suggests season of birth can serve as a proxy of harmful environmental factors. Given that prenatal exposure of these factors may trigger pathologic processes in the neurodevelopment, they may consequently lead to brain volume alterations. Here we tested the effects of season of birth on gray matter volume in a transdiagnostic sample of patients with schizophrenia and depression compared to healthy controls (n = 192). We found a significant effect of season of birth on gray matter volume with reduced right hippocampal volume in summer-born compared to winter-born patients with depression. In addition, the volume of the right hippocampus was reduced independent from season of birth in schizophrenia. Our results support the potential impact of season of birth on hippocampal volume in depression.
Collapse
Affiliation(s)
- Nora Schaub
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Nina Ammann
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Frauke Conring
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Thomas Müller
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), Inselspital, University Institute of Diagnostic and Interventional Neuroradiology, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
- *Correspondence: Katharina Stegmayer,
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| |
Collapse
|
12
|
Han S, Zheng R, Li S, Zhou B, Jiang Y, Wang C, Wei Y, Pang J, Li H, Zhang Y, Chen Y, Cheng J. Integrative Functional, Molecular, and Transcriptomic Analyses of Altered Intrinsic Timescale Gradient in Depression. Front Neurosci 2022; 16:826609. [PMID: 35250462 PMCID: PMC8891525 DOI: 10.3389/fnins.2022.826609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology and pharmacology of depression are hypothesized to be related to the imbalance of excitation–inhibition that gives rise to hierarchical dynamics (or intrinsic timescale gradient), further supporting a hierarchy of cortical functions. On this assumption, intrinsic timescale gradient is theoretically altered in depression. However, it remains unknown. We investigated altered intrinsic timescale gradient recently developed to measure hierarchical brain dynamics gradient and its underlying molecular architecture and brain-wide gene expression in depression. We first presented replicable intrinsic timescale gradient in two independent Chinese Han datasets and then investigated altered intrinsic timescale gradient and its possible underlying molecular and transcriptional bases in patients with depression. As a result, patients with depression showed stage-specifically shorter timescales compared with healthy controls according to illness duration. The shorter timescales were spatially correlated with monoamine receptor/transporter densities, suggesting the underlying molecular basis of timescale aberrance and providing clues to treatment. In addition, we identified that timescale aberrance-related genes ontologically enriched for synapse-related and neurotransmitter (receptor) terms, elaborating the underlying transcriptional basis of timescale aberrance. These findings revealed atypical timescale gradient in depression and built a link between neuroimaging, transcriptome, and neurotransmitter information, facilitating an integrative understanding of depression.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- *Correspondence: Shaoqiang Han,
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jianyue Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengfen Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Yuan Chen,
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Jingliang Cheng,
| |
Collapse
|
13
|
Liu X, Hou Z, Yin Y, Xie C, Zhang H, Zhang H, Zhang Z, Yuan Y. Decreased cortical thickness of left premotor cortex as a treatment predictor in major depressive disorder. Brain Imaging Behav 2021; 15:1420-1426. [PMID: 32710337 DOI: 10.1007/s11682-020-00341-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study aimed to examine the cerebral cortex characteristics (thickness, surface area, and curvature) in patients with major depressive disorder (MDD), and explore whether these cortex characteristics are predictors for the antidepressant therapeutic effect. 105 patients with MDD and 49 healthy controls (HCs) were recruited. Both groups were given magnetic resonance image (MRI) scans at baseline period, and then the cerebral cortex characteristics (thickness, surface area, and curvature) were calculated using the DPABISurf software. The Hamilton Depression Scale-24 (HAMD-24) reductive rate was used to measure antidepressant therapeutic effect and Snaith Hamilton Rating Scale (SHAPS) reduction was performed to assess the change of anhedonia after treatment of 8 weeks. Correlation analysis was performed to identify the relationship between cortex characteristics and antidepressant therapeutic effect in patients with MDD. There were no significant differences in the cortical curvature and surface area between MDD and HC groups, while significant decreases were found in the cortical thickness of inferior frontal cortex (IFC), premotor cortex (PMC), orbital and medial prefrontal cortex (OMPFC) in the left hemisphere of MDD group, comparing with HC group (P < 0.05 for all, corrected by threshold-free cluster enhancement). In MDD group, the cortical thickness of left PMC had significant positive correlations with 8-week HAMD-24 reduction (r = 0.228, P = 0.020) and HAMD-24 reductive rate (r = 0.193, P = 0.048); and a negative correlation with the 8-week SHAPS reduction (r = -0.240, P = 0.018). Decreased cortical thickness in left PMC may be a predictor of therapeutic effect in MDD. Determining the cortical thickness of this region before treatment can provide certain reference value for clinical antidepressant treatment.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, School of Medicine, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Haisan Zhang
- Department of Clinical Magnetic Resonance Imaging, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhijun Zhang
- Department of Neurology, School of Medicine, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
14
|
Schnakenberg P, Hahn L, Stickel S, Stickeler E, Habel U, Eickhoff SB, Chechko N, Dukart J. Examining early structural and functional brain alterations in postpartum depression through multimodal neuroimaging. Sci Rep 2021; 11:13551. [PMID: 34193913 PMCID: PMC8245412 DOI: 10.1038/s41598-021-92882-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
Postpartum depression (PPD) affects approximately 1 in 10 women after childbirth. A thorough understanding of a preexisting vulnerability to PPD will likely aid the early detection and treatment of PPD. Using a within-sample association, the study examined whether the brain's structural and functional alterations predict the onset of depression. 157 euthymic postpartum women were subjected to a multimodal MRI scan within the first 6 days of childbirth and were followed up for 12 weeks. Based on a clinical interview 12 weeks postpartum, participants were classified as mentally healthy or having either PPD or adjustment disorder (AD). Voxel-based morphometry and resting-state functional connectivity comparisons were performed between the three groups. 13.4% of women in our study developed PPD (n = 21) and 12.1% (n = 19) adjustment disorder (AD). The risk factors for PPD were a psychiatric history and the experience and severity of baby blues and the history of premenstrual syndrome. Despite the different risk profiles, no differences between the PPD, AD and control group were apparent based on structural and functional neuroimaging data immediately after childbirth. At 12 weeks postpartum, a significant association was observed between Integrated Local Correlation (LCor) and the Edinburgh Postnatal Depression Score (EPDS). Our findings do not support the notion that the brain's structural and resting-state functional alterations, if present, can be used as an early biomarker of PPD or AD. However, effects may become apparent if continuous measures of symptom severity are chosen.
Collapse
Affiliation(s)
- Patricia Schnakenberg
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany. .,Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany. .,Institute of Neuroscience and Medicine, JARA Institute Brain Structure Function Relationship (INM-10), Research Centre Jülich, Jülich, Germany.
| | - Lisa Hahn
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Stickel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine, JARA Institute Brain Structure Function Relationship (INM-10), Research Centre Jülich, Jülich, Germany
| | - Elmar Stickeler
- Department of Gynecology and Obstetrics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine, JARA Institute Brain Structure Function Relationship (INM-10), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Natalia Chechko
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Neuroscience and Medicine, JARA Institute Brain Structure Function Relationship (INM-10), Research Centre Jülich, Jülich, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Han S, Chen Y, Zheng R, Li S, Jiang Y, Wang C, Fang K, Yang Z, Liu L, Zhou B, Wei Y, Pang J, Li H, Zhang Y, Cheng J. The stage-specifically accelerated brain aging in never-treated first-episode patients with depression. Hum Brain Mapp 2021; 42:3656-3666. [PMID: 33932251 PMCID: PMC8249899 DOI: 10.1002/hbm.25460] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Depression associated with structural brain abnormalities is hypothesized to be related with accelerated brain aging. However, there is far from a unified conclusion because of clinical variations such as medication status, cumulative illness burden. To explore whether brain age is accelerated in never‐treated first‐episode patients with depression and its association with clinical characteristics, we constructed a prediction model where gray matter volumes measured by voxel‐based morphometry derived from T1‐weighted MRI scans were treated as features. The prediction model was first validated using healthy controls (HCs) in two Chinese Han datasets (Dataset 1, N = 130 for HCs and N = 195 for patients with depression; Dataset 2, N = 270 for HCs) separately or jointly, then the trained prediction model using HCs (N = 400) was applied to never‐treated first‐episode patients with depression (N = 195). The brain‐predicted age difference (brain‐PAD) scores defined as the difference between predicted brain age and chronological age, were calculated for all participants and compared between patients with age‐, gender‐, educational level‐matched HCs in Dataset 1. Overall, patients presented higher brain‐PAD scores suggesting patients with depression having an “older” brain than expected. More specially, this difference occurred at illness onset (illness duration <3 months) and following 2 years then disappeared as the illness further advanced (>2 years) in patients. This phenomenon was verified by another data‐driven method and significant correlation between brain‐PAD scores and illness duration in patients. Our results reveal that accelerated brain aging occurs at illness onset and suggest it is a stage‐dependent phenomenon in depression.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Keke Fang
- Phase I Clinical Research Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhengui Yang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Jianyue Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengfen Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| |
Collapse
|
16
|
Disorder- and emotional context-specific neurofunctional alterations during inhibitory control in generalized anxiety and major depressive disorder. NEUROIMAGE-CLINICAL 2021; 30:102661. [PMID: 33866301 PMCID: PMC8060548 DOI: 10.1016/j.nicl.2021.102661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/03/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
fMRI affective GO/NOGO tasks differentiates depression (MDD) from anxiety (GAD). MDD but not GAD showed impaired inhibitory control on the behavioral level. MDD exhibited decreased engagement of posterior frontal/mid-cingulate regions. The neural alterations were specific for MDD and inhibition in negative contexts. GAD showed intact inhibition and enhanced dlPFC activity relative to MDD.
Major Depressive Disorder (MDD) and Generalized Anxiety Disorder (GAD) are highly debilitating and often co-morbid disorders. The disorders exhibit partly overlapping dysregulations on the behavioral and neurofunctional level. The determination of disorder-specific behavioral and neurofunctional dysregulations may therefore promote neuro-mechanistic and diagnostic specificity. In order to determine disorder-specific alterations in the domain of emotion-cognition interactions the present study examined emotional context-specific inhibitory control in treatment-naïve MDD (n = 37) and GAD (n = 35) patients and healthy controls (n = 35). On the behavioral level MDD but not GAD exhibited impaired inhibitory control irrespective of emotional context. On the neural level, MDD-specific attenuated recruitment of inferior/medial parietal, posterior frontal, and mid-cingulate regions during inhibitory control were found during the negative context. GAD exhibited a stronger engagement of the left dorsolateral prefrontal cortex relative to MDD. Overall the findings from the present study suggest disorder- and emotional context-specific behavioral and neurofunctional inhibitory control dysregulations in major depression and may point to a depression-specific neuropathological and diagnostic marker.
Collapse
|
17
|
Association of quality of life with structural, functional and molecular brain imaging in community-dwelling older adults. Neuroimage 2021; 231:117819. [PMID: 33549750 DOI: 10.1016/j.neuroimage.2021.117819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As the population ages, maintaining mental health and well-being of older adults is a public health priority. Beyond objective measures of health, self-perceived quality of life (QoL) is a good indicator of successful aging. In older adults, it has been shown that QoL is related to structural brain changes. However, QoL is a multi-faceted concept and little is known about the specific relationship of each QoL domain to brain structure, nor about the links with other aspects of brain integrity, including white matter microstructure, brain perfusion and amyloid deposition, which are particularly relevant in aging. Therefore, we aimed to better characterize the brain biomarkers associated with each QoL domain using a comprehensive multimodal neuroimaging approach in older adults. METHODS One hundred and thirty-five cognitively unimpaired older adults (mean age ± SD: 69.4 ± 3.8 y) underwent structural and diffusion magnetic resonance imaging, together with early and late florbetapir positron emission tomography scans. QoL was assessed using the brief version of the World Health Organization's QoL instrument, which allows measuring four distinct domains of QoL: self-perceived physical health, psychological health, social relationships and environment. Multiple regression analyses were carried out to identify the independent global neuroimaging predictor(s) of each QoL domain, and voxel-wise analyses were then conducted with the significant predictor(s) to highlight the brain regions involved. Age, sex, education and the other QoL domains were entered as covariates in these analyses. Finally, forward stepwise multiple regressions were conducted to determine the specific items of the relevant QoL domain(s) that contributed the most to these brain associations. RESULTS Only physical health QoL was associated with global neuroimaging values, specifically gray matter volume and white matter mean kurtosis, with higher physical health QoL being associated with greater brain integrity. These relationships were still significant after correction for objective physical health and physical activity measures. No association was found with global brain perfusion or global amyloid deposition. Voxel-wise analyses revealed that the relationships with physical health QoL concerned the anterior insula and ventrolateral prefrontal cortex, and the corpus callosum, corona radiata, inferior frontal white matter and cingulum. Self-perceived daily living activities and self-perceived pain and discomfort were the items that contributed the most to these associations with gray matter volume and white matter mean kurtosis, respectively. CONCLUSIONS Better self-perceived physical health, encompassing daily living activities and pain and discomfort, was the only QoL domain related to brain structural integrity including higher global gray matter volume and global white matter microstructural integrity in cognitively unimpaired older adults. The relationships involved brain structures belonging to the salience network, the pain pathway and the empathy network. While previous studies showed a link between objective measures of physical health, our findings specifically highlight the relevance of monitoring and promoting self-perceived physical health in the older population. Longitudinal studies are needed to assess the direction and causality of the relationships between QoL and brain integrity.
Collapse
|
18
|
Park JH, Lee SH, Kim Y, Park SW, Byeon GH, Jang JW. Depressive symptoms are associated with worse cognitive prognosis in patients with newly diagnosed idiopathic Parkinson disease. Psychogeriatrics 2020; 20:880-890. [PMID: 32840032 DOI: 10.1111/psyg.12601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Although depression is very common in patients with Parkinson disease (PD), only a few studies have investigated the longitudinal effects of initial depression on cognitive decline in these patients. The purpose of this study was to investigate the effect of depression on cognitive functions in patients with PD. METHODS We used data from the Parkinson Progression Markers Initiative (PPMI) to investigate the relationship between depression and PD. Depressive symptoms were measured in patients with PD based on the Geriatric Depression Scale (GDS) or Neuropsychiatric Inventory-Questionnaire (NPI-Q) scores obtained at baseline. We evaluated cognitive decline as whether a patient with PD progressed to PD with mild cognitive impairment (MCI) during a 4-year follow-up period. Multivariate Cox regression analysis was done to know whether depression can predict the conversion to MCI. In addition, a voxel-based morphometric analysis using volumetric brain magnetic resonance imaging was used to compare structural changes related to future cognitive decline as well as to reveal longitudinal effect of baseline depression on cortical atrophy. RESULTS Data from 263 patients with cognitively normal de novo PD who were available for longitudinal cognitive testing were analysed. The multivariate Cox regression analysis revealed that the depressive symptoms were independent risk factors for conversion to MCI in patients with de novo PD after adjusting for covariates (hazards ratio (95% CI)) of depression defined by the GDS (1.753 (1.084-2.835)) and the NPI (1.815 (1.083-3.042)) scores, respectively. The significant structural changes in PD with MCI as well as longitudinal effect of baseline depression on subsequent cortical atrophy were found in multiple areas on the voxel-based morphometric analysis (P < 0.001, family-wise error rate corrected). CONCLUSIONS Our study indicates that the presence of depressive symptoms in patients with early PD is associated with a higher risk of progression to MCI and early depression may reflect subsequent cortical atrophy.
Collapse
Affiliation(s)
- Jeong Hoon Park
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, South Korea
| | - Seung Hwan Lee
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, South Korea
| | - Yeshin Kim
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, South Korea
| | - Sang-Won Park
- Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Gi Hwan Byeon
- Department of Psychiatry, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, South Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, South Korea
| | | |
Collapse
|
19
|
Nolan M, Roman E, Nasa A, Levins KJ, O'Hanlon E, O'Keane V, Willian Roddy D. Hippocampal and Amygdalar Volume Changes in Major Depressive Disorder: A Targeted Review and Focus on Stress. CHRONIC STRESS 2020; 4:2470547020944553. [PMID: 33015518 PMCID: PMC7513405 DOI: 10.1177/2470547020944553] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023]
Abstract
Medial temporal lobe structures have long been implicated in the pathogenesis of
major depressive disorder. Although findings of smaller hippocampal and
amygdalar volumes are common, inconsistencies remain in the literature. In this
targeted review, we examine recent and significant neuroimaging papers examining
the volumes of these structures in major depressive disorder. A targeted
PubMed/Google Scholar search was undertaken focusing on volumetric neuroimaging
studies of the hippocampus and amygdala in major depressive disorder. Where
possible, mean volumes and accompanying standard deviations were extracted
allowing computation of Cohen’s ds effect sizes. Although not a
meta-analysis, this allows a broad comparison of volume changes across studies.
Thirty-nine studies in total were assessed. Hippocampal substructures and
amygdale substructures were investigated in 11 and 2 studies, respectively. The
hippocampus was more consistently smaller than the amygdala across studies,
which is reflected in the larger cumulative difference in volume found with the
Cohen’s ds calculations. The left and right hippocampi were,
respectively, 92% and 91.3% of the volume found in controls, and the left and
right amygdalae were, respectively, 94.8% and 92.6% of the volume of controls
across all included studies. The role of stress in temporal lobe structure
volume reduction in major depressive disorder is discussed.
Collapse
Affiliation(s)
- Mark Nolan
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Elena Roman
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Anurag Nasa
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kirk J Levins
- Department of Anaesthesia, Intensive Care and Pain Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Darren Willian Roddy
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Jenkins LM, Chiang JJ, Vause K, Hoffer L, Alpert K, Parrish TB, Miller GE, Wang L. Outward subcortical curvature associated with sub-clinical depression symptoms in adolescents. NEUROIMAGE-CLINICAL 2020; 25:102187. [PMID: 31982681 PMCID: PMC6994704 DOI: 10.1016/j.nicl.2020.102187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 01/10/2023]
Abstract
We related subcortical morphology to subthreshold depression (StD) in adolescents. StD had mostly positively associations (outward shape associated with higher StD). StD associated with outward hippocampal and amygdala morphology in females (N = 160). And outward hippocampal, thalamic, and basal ganglia morphology in males (N = 96). Pro-inflammatory cytokines did not mediate these relationships.
Objective Subclinical or subthreshold depressive symptoms (StD) are frequent in adolescence and are related to suicidality and onset of depression in adulthood, however, their neurobiology is poorly understood. We examined the relationship between StD and subcortical grey matter structures in unmedicated adolescents with no history of axis I diagnosis. Methods 277 youths from Chicago aged 14 years participated, undergoing a structural MRI scan and completing the Revised Children's Anxiety and Depression Scale (RCADS). Blood samples provided a composite of five pro-inflammatory cytokines. Regions of interest (ROI) for vertex-based surface analysis were the left and right amygdala, hippocampus, thalamus, caudate, nucleus accumbens, pallidum and putamen. Covariates were age, pubertal status, socioeconomic disadvantage and intracranial volume. Males and females were analysed separately. Results StD had positive associations (outward shape) with subcortical morphology in the right amygdala and left hippocampus in females, and the bilateral putamen and the left caudate, hippocampus and thalamus in males. However, we also found negative associations with StD (inward contractions) in the hippocampus in females and the caudate in males. Pro-inflammatory cytokines did not mediate the relationship between StD and outward morphology or volume. Conclusion This is one of the first studies to examine subcortical morphology of basal ganglia and thalamic regions related to StD in adolescents, and the first study to report mostly positive associations between StD, volume and outward morphology in youths. These findings could reflect intact neurogenesis or resilience to depression, however longitudinal research is needed to further understand the neurobiology of StD in adolescents.
Collapse
Affiliation(s)
- Lisanne M Jenkins
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States.
| | - Jessica J Chiang
- Institute for Policy Research and Department of Psychology, Northwestern University, Chicago, IL, United States
| | - Katherine Vause
- Institute for Policy Research and Department of Psychology, Northwestern University, Chicago, IL, United States
| | - Lauren Hoffer
- Institute for Policy Research and Department of Psychology, Northwestern University, Chicago, IL, United States
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States
| | - Todd B Parrish
- Department of Radiology, Northwestern University, Chicago, IL, United States; Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States
| | - Gregory E Miller
- Institute for Policy Research and Department of Psychology, Northwestern University, Chicago, IL, United States
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States; Department of Radiology, Northwestern University, Chicago, IL, United States
| |
Collapse
|