1
|
Lipari N, Galfano A, Venkatesh S, Grezenko H, Sandoval IM, Manfredsson FP, Bishop C. The effects of chemogenetic targeting of serotonin-projecting pathways on L-DOPA-induced dyskinesia and psychosis in a bilateral rat model of Parkinson's disease. Front Neural Circuits 2024; 18:1463941. [PMID: 39634948 PMCID: PMC11615880 DOI: 10.3389/fncir.2024.1463941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Parkinson's disease (PD) is commonly characterized by severe dopamine (DA) depletion within the substantia nigra (SN) leading to a myriad of motor and non-motor symptoms. One underappreciated and prevalent non-motor symptom, Parkinson's disease-associated psychosis (PDAP), significantly erodes patient and caregiver quality of life yet remains vastly understudied. While the gold standard pharmacotherapy for motor symptoms Levodopa (LD) is initially highly effective, it can lead to motor fluctuations like LD-induced dyskinesia (LID) and non-motor fluctuations such as intermittent PDAP. One source of these fluctuations could be the serotonergic raphe nuclei and their projections. Serotonin (5-HT) neurons possess the machinery necessary to convert and release DA from exogenous LD. In DA-depleted brain regions these 5-HT projections can act as surrogates to the DA system initially compensating but chronically leading to aberrant neuroplasticity which has been linked to LID and may also contribute to non-motor fluctuations. In support, recent work from our lab established a positive relationship between LID and PDAP in parkinsonian rats. Therefore, it was hypothesized that normalizing 5-HT forebrain input would reduce the co-expression of LID and PDAP. Methods To do so, we expressed 5-HT projection specific inhibitory designer receptor exclusively activated by designer drugs (DREADDs) using Cre-dependent AAV9-hM4di in tryptophan hydroxylase 2 (TPH2)-Cre bilaterally 6-OHDA-lesioned rats. Thereafter we used the designer drug Compound 21 to selectively inhibit 5-HT raphe projections during LD treatment to modulate the expression of PDAP, assayed by prepulse inhibition (PPI) and LID, quantified by the abnormal involuntary movements (AIMs) test. Results Our results suggest that chemogenetic inhibition of 5-HT raphe-projecting cells significantly reduces LID without affecting stepping ability or established sensorimotor gating deficits. Discussion Overall, this study provides further evidence for the complex influence of 5-HT raphe-projecting neurons on LD's neurobehavioral effects.
Collapse
Affiliation(s)
- Natalie Lipari
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Ashley Galfano
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Shruti Venkatesh
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Han Grezenko
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | | | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
2
|
Kang W, Frouni I, Bédard D, Kwan C, Hamadjida A, Nuara SG, Gourdon JC, Huot P. Positive allosteric mGluR 2 modulation with BINA alleviates dyskinesia and psychosis-like behaviours in the MPTP-lesioned marmoset. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8917-8924. [PMID: 38861009 DOI: 10.1007/s00210-024-03215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
There is mounting evidence that positive allosteric modulation of metabotropic glutamate type 2 receptors (mGluR2) is an efficacious approach to reduce the severity of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia, psychosis-like behaviours (PLBs), while conferring additional anti-parkinsonian benefit. However, the mGluR2 positive allosteric modulators (PAMs) tested so far, LY-487,379 and CBiPES, share a similar chemical scaffold. Here, we sought to assess whether similar benefits would be conferred by a structurally-distinct mGluR2 PAM, biphenylindanone A (BINA). Six 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets exhibiting dyskinesia and PLBs were administered L-DOPA with either vehicle or BINA (0.1, 1, and 10 mg/kg) in a randomised within-subject design and recorded. Behaviour was analysed by a blinded rater who scored the severity of each of parkinsonism, dyskinesia and PLBs. When added to L-DOPA, BINA 0.1 mg/kg, 1 mg/kg, and 10 mg/kg all significantly reduced the severity of global dyskinesia, by 40%, 52% and 53%, (all P < 0.001) respectively. BINA similarly attenuated the severity of global PLBs by 35%, 48%, and 50%, (all P < 0.001) respectively. Meanwhile, BINA did not alter the effect of L-DOPA on parkinsonism exhibited by the marmosets. The results of this study provide incremental evidence of positive allosteric modulation of mGluR2 as an effective therapeutic strategy for alleviating dyskinesia and PLBs, without hindering the anti-parkinsonian action of L-DOPA. Furthermore, this therapeutic benefit does not appear to be confined to a particular chemical scaffold.
Collapse
Affiliation(s)
- Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada.
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
3
|
Frouni I, Kwan C, Bédard D, Hamadjida A, Kang W, Belliveau S, Nuara SG, Gourdon JC, Huot P. Effect of mGluR 2 and mGluR 2/3 activators on parkinsonism in the MPTP-lesioned non-human primate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9135-9147. [PMID: 38900249 DOI: 10.1007/s00210-024-03216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
We have previously discovered that the selective activation of metabotropic glutamate type 2 receptors (mGluR2) and concurrent stimulation of metabotropic glutamate types 2 and 3 receptors (mGluR2/3) enhance the anti-parkinsonian action of L-3,4-dihydroxyphenylalanine (L-DOPA). Here, we sought to determine the effects of the mGluR2/3 orthosteric agonists LY-354,740 and LY-404,039, as well as the effects of the mGluR2 positive allosteric modulators LY-487,379 and CBiPES on the range of movement, bradykinesia, posture and alertness as adjuncts to L-DOPA. Ten 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets entered 4 experimental streams: L-DOPA + LY-354,740 (vehicle, 0.1, 0.3 and 1 mg/kg), L-DOPA + LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg), L-DOPA + LY-487,379 (vehicle, 0.1, 1 and 10 mg/kg), L-DOPA + CBiPES (vehicle, 0.1, 1 and 10 mg/kg). For each molecule, treatments were randomised, and the range of movement, bradykinesia, posture and alertness were assessed by a blinded rater. None of the tested compounds significantly altered the global range of movement. LY-404,039 and CBiPES both reduced global bradykinesia, by up to 46% (both P < 0.05). LY-354,740, LY-404,039 and CBiPES each improved global posture by 35%, 44% and 39% (each P < 0.05), respectively. LY-404,039 and CBiPES both enhanced alertness by 54% (P < 0.05) and 79% (P < 0.01), respectively. LY-487,379 did not improve any of the parameters. Our results suggest that selective mGluR2 positive allosteric modulation and combined mGluR2/3 orthosteric stimulation might benefit bradykinesia, posture and alertness in PD when added to L-DOPA, which potentially represent novel therapeutic indications for molecules acting via these mechanisms.
Collapse
Affiliation(s)
- Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, Quebec, H3A 2B4, Canada
| | - Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, Quebec, H3A 2B4, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, Quebec, H3A 2B4, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, Quebec, H3A 2B4, Canada
| | - Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, Quebec, H3A 2B4, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, Quebec, H3A 2B4, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, Quebec, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, Quebec, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, Quebec, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Kang W, Nuara SG, Bédard D, Frouni I, Kwan C, Hamadjida A, Gourdon JC, Gaudette F, Beaudry F, Huot P. The mGluR 2/3 orthosteric agonist LY-404,039 reduces dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2347-2355. [PMID: 37410156 DOI: 10.1007/s00210-023-02587-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/06/2022] [Indexed: 07/07/2023]
Abstract
LY-404,039 is an orthosteric agonist of metabotropic glutamate 2 and 3 receptors (mGluR2/3) that may harbour additional agonist effect at dopamine D2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously entered clinical trials as treatment options for schizophrenia. They could therefore be repurposed, if proven efficacious, for other conditions, notably Parkinson's disease (PD). We have previously shown that the mGluR2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia and psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Unlike LY-404,039, LY-354,740 does not stimulate dopamine D2 receptors, suggesting that LY-404,039 may elicit broader therapeutic effects in PD. Here, we sought to investigate the effect of this possible additional dopamine D2-agonist action of LY-404,039 by assessing its efficacy on dyskinesia, PLBs and parkinsonism in the MPTP-lesioned marmoset. We first determined the pharmacokinetic profile of LY-404,039 in the marmoset, in order to select doses resulting in plasma concentrations known to be well tolerated in the clinic. Marmosets were then injected L-DOPA with either vehicle or LY-404,039 (0.1, 0.3, 1 and 10 mg/kg). The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of global dyskinesia (by 55%, P < 0.01) and PLBs (by 50%, P < 0.05), as well as reduction of global parkinsonism (by 47%, P < 0.05). Our results provide additional support of the efficacy of mGluR2/3 orthosteric stimulation at alleviating dyskinesia, PLBs and parkinsonism. Because LY-404,039 has already been tested in clinical trials, it could be repurposed for indications related to PD.
Collapse
Affiliation(s)
- Woojin Kang
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Dominique Bédard
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Imane Frouni
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Kwan
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Adjia Hamadjida
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Philippe Huot
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
5
|
Anti-parkinsonian effect of the mGlu 2 positive allosteric modulator LY-487,379 as monotherapy and adjunct to a low L-DOPA dose in the MPTP-lesioned marmoset. Eur J Pharmacol 2023; 939:175429. [PMID: 36502960 DOI: 10.1016/j.ejphar.2022.175429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
In previous experiments, we have discovered that positive allosteric modulation of metabotropic glutamate 2 (mGlu2) receptors enhances the anti-parkinsonian action of an optimal dose of L-3,4-dihydroxyphenylalanine (L-DOPA). Whether selective mGlu2 positive allosteric modulation would also alleviate parkinsonian disability as monotherapy or as adjunct to a sub-optimal dose of L-DOPA has not been determined. Here, we assessed the anti-parkinsonian effect of mGlu2 positive allosteric modulation as monotherapy and adjunct to a sub-optimal dose of L-DOPA in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets. The highly selective positive allosteric modulator (PAM) LY-487,379 was utilised to activate mGlu2 receptors. When administered as monotherapy, LY-487,379 10 mg/kg diminished global parkinsonism by 48% (P < 0.001) and increased duration of on-time by 7-fold, when compared to vehicle treatment (P < 0.05). When added to a sub-optimal dose of L-DOPA, LY-487,379 10 mg/kg decreased global parkinsonism by 44% (P < 0.001) and extended duration of on-time by 2.5-fold (P < 0.01). Our results indicate that selective mGlu2 positive allosteric modulation elicits anti-parkinsonian benefits as monotherapy and as adjunct to sub-optimal dose of L-DOPA paradigms, potentially suggesting that mGlu2 PAMs may have a therapeutic niche early in the treatment of PD as DOPA-sparing agents.
Collapse
|
6
|
Nuara SG, Gourdon JC, Huot P. Evaluation of the effects of the mGlu 2/3 antagonist LY341495 on dyskinesia and psychosis-like behaviours in the MPTP-lesioned marmoset. Pharmacol Rep 2022; 74:614-625. [PMID: 35761013 DOI: 10.1007/s43440-022-00378-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND We have previously demonstrated that the metabotropic glutamate 2 and 3 (mGlu2/3) antagonist LY341495 reverses the anti-dyskinetic and anti-psychotic benefits conferred by mGlu2 activation and serotonin 2A (5-HT2A) antagonism. Here, we hypothesised that a higher dose of LY341495, associated with a higher antagonistic effect at mGlu3 receptors, would result in a reduction of the reversal of mGlu2 activation and 5-HT2A blockade on dyskinesia, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. METHODS After induction of parkinsonism with MPTP, marmosets entered 3 streams of experiments, in which the following treatments were administered, in combination with l-3,4-dihydroxyphenylalanine (L-DOPA), after which dyskinesia, psychosis-like behaviours (PLBs) and parkinsonism were rated: 1. vehicle/vehicle, LY354740 (mGlu2/3 orthosteric agonist)/vehicle, LY354740/LY341495 1 mg/kg and LY354740/LY341495 3 mg/kg; 2. vehicle/vehicle, LY487379 (mGlu2 positive allosteric modulator)/vehicle, LY487379/LY341495 1 mg/kg and LY487379/LY341495 3 mg/kg; 3. vehicle/vehicle, EMD-281,014 (5-HT2A antagonist)/vehicle, EMD-281,014/LY341495 1 mg/kg and EMD-281,014/LY341495 3 mg/kg. RESULTS Each of LY354740, LY487379 and EMD-281,014 reduced the severity of L-DOPA-induced dyskinesia, by 55%, 39% and 40%, respectively (all p < 0.001), as well as the severity of PLBs, by 48%, 36% and 41%, respectively (all p < 0.001). Adding LY341495 1 and 3 mg/kg to each of LY354740, LY487379 and EMD-281,014 resulted in a dose-dependent reversal of their anti-dyskinetic and anti-psychotic actions. No effect on the anti-parkinsonian action of L-DOPA was noted with any treatment combination. CONCLUSION These results suggest that an antagonistic effect at mGlu3 receptors may not be sufficient to overcome the deleterious effect of mGlu2 blockade on dyskinesia in PD. It remains to be seen whether similar effects would have been obtained with a selective mGlu3 antagonist.
Collapse
Affiliation(s)
- Stephen G Nuara
- Comparative Medicine and Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine and Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada. .,Division of Neurology, Department of Neurosciences, Movement Disorder Clinic, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
7
|
Zheng C, Zhang F. New insights into pathogenesis of l-DOPA-induced dyskinesia. Neurotoxicology 2021; 86:104-113. [PMID: 34331976 DOI: 10.1016/j.neuro.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is a progressive and self-propelling neurodegenerative disorder, which is characterized by motor symptoms, such as rigidity, tremor, slowness of movement and problems with gait. These symptoms become worse over time. To date, Dopamine (DA) replacement therapy with 3, 4-dihydroxy-l-phenylalanine (L-DOPA) is still the most effective pharmacotherapy for motor symptoms of PD. Unfortunately, motor fluctuations consisting of wearing-off effect actions and dyskinesia tend to occur in a few years of starting l-DOPA. Currently, l-DOPA-induced dyskinesia (LID) is troublesome and the pathogenesis of LID requires further investigation. Importantly, a new intervention for LID is imminent. Thus, this review mainly summarized the clinical features, risk factors and pathogenesis of LID to provide updatefor the development of therapeutic targets and new approaches for the treatment of LID.
Collapse
Affiliation(s)
- Changqing Zheng
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
8
|
Kwan C, Frouni I, Nuara SG, Belliveau S, Kang W, Hamadjida A, Bédard D, Beaudry F, Panisset M, Gourdon JC, Huot P. Combined 5-HT 2A and mGlu 2 modulation for the treatment of dyskinesia and psychosis in Parkinson's disease. Neuropharmacology 2021; 186:108465. [PMID: 33485945 DOI: 10.1016/j.neuropharm.2021.108465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Antagonising the serotonin 2A (5-HT2A) receptor is an efficacious way to alleviate dyskinesia and psychosis in Parkinson's disease (PD). However, previous research indicates that there might be a limit to the effects conferred by this approach. 5-HT2A receptors were shown to form hetero-dimers with metabotropic glutamate 2 (mGlu2) receptors, in which 5-HT2A blockade and mGlu2 activation elicit equivalent effects at the downstream signalling level. We have previously shown that mGlu2 activation reduces both dyskinesia and psychosis-like behaviours (PLBs) induced by L-3,4-dihydroxyphenylalanine (l-DOPA), in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate. Here, we hypothesised that concurrent 5-HT2A antagonism and mGlu2 activation would provide greater anti-dyskinetic and anti-psychotic benefits than either approach alone. We conducted 3 series of experiments in the MPTP-lesioned marmoset. In the first series of experiments, the mGlu2 positive allosteric modulator LY-487,379 and the 5-HT2A antagonist EMD-281,014, either alone or in combination, were added to l-DOPA. In the second series of experiments, the mGlu2/3 orthosteric agonist LY-354,740 and EMD-281,014, either alone or in combination, were added to l-DOPA. In the last series of experiments, we investigated whether mGlu2 blockade would diminish the effects of antagonising 5-HT2A receptors. To this end, the mGlu2/3 orthosteric antagonist LY-341,495 and EMD-281,014, either alone or in combination, were added to l-DOPA. We found that the anti-dyskinetic effect of the combination LY-487,379/EMD-281,014 was greater than the ones conferred by LY-487,379 (by 35%, P < 0.05) and EMD-281,014 (by 38%, P < 0.01). The anti-dyskinetic and anti-psychotic effects of the combination LY-354,740/EMD-281,014 were also greater than the ones conferred by LY-354,740 (by 57% for dyskinesia and 54% for PLBs, both P < 0.001) and EMD-281,014 (by 61% for dyskinesia and 53% for PLBs, both P < 0.001). The anti-parkinsonian action of l-DOPA was maintained with all treatments. Lastly, the addition of LY-341,495 abolished the therapeutic effects of EMD-281,014 on dyskinesia and PLBs. Our results suggest that mGlu2 activation may enhance the anti-dyskinetic and anti-psychotic effects of 5-HT2A blockade and could provide relief to PD patients with dyskinesia and psychotic symptoms beyond what can be achieved with current therapies.
Collapse
Affiliation(s)
- Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale Du Québec, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Michel Panisset
- Unité des Troubles Du Mouvement André-Barbeau, Service de Neurologie, Département de Médecine, Centre Hospitalier de L'Université de Montréal, Montreal, QC, Canada; Département de Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
9
|
Frouni I, Kwan C, Nuara SG, Belliveau S, Kang W, Hamadjida A, Bédard D, Gourdon JC, Huot P. Effect of the mGlu 2 positive allosteric modulator CBiPES on dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. J Neural Transm (Vienna) 2021; 128:73-81. [PMID: 33392826 DOI: 10.1007/s00702-020-02287-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022]
Abstract
Advanced Parkinson's disease (PD) is often complicated by the occurrence of dyskinesia, motor fluctuations and psychosis. To this day, few treatment options are available for each of these phenomena, and they are at times not effective or elicit adverse events, leaving some patients short of therapeutic options. We have recently shown that positive allosteric modulation of metabotropic 2 (mGlu2) receptors with the prototypical positive allosteric modulator (PAM) LY-487,379 is efficacious at alleviating both dyskinesia and psychosis-like behaviours (PLBs), while simultaneously enhancing the anti-parkinsonian action of L-3,4-dihydroxyphenylalanine (L-DOPA), in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Here, we assessed the effects of CBiPES, a mGlu2 PAM derived from LY-487,379, but with improved pharmacokinetic properties. Six MPTP-lesioned marmosets with reproducible dyskinesia and PLBs were administered L-DOPA in combination with vehicle or CBiPES (0.1, 1 and 10 mg/kg), after which their behaviour was rated. CBiPES 10 mg/kg reduced global dyskinesia by 60% (P < 0.0001), while peak dose dyskinesia was reduced by 66% (P < 0.001), compared to L-DOPA/vehicle. CBiPES 10 mg/kg also diminished global PLBs by 56% (P < 0.0001), while peak dose PLBs were reduced by 64% (P < 0.001), compared to L-DOPA/vehicle. Lastly, CBiPES enhanced the anti-parkinsonian action of L-DOPA, by reducing global parkinsonian disability by 43% (P < 0.01), compared to L-DOPA/vehicle. Our results provide further evidence that mGlu2 positive allosteric modulation may be an approach that could be efficacious for the treatment of dyskinesia, psychosis and motor fluctuations in PD.
Collapse
Affiliation(s)
- Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada.,Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute, Montreal, QC, Canada. .,Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada. .,Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|