1
|
Zhang P, Han TT, Tang JX, Zhong K, Ma Y, Smith WK, Zhao WG, Lu QY. Whole genome sequence of mulberry crinivirus, a new member of the genus Crinivirus. Arch Virol 2023; 168:50. [PMID: 36609709 DOI: 10.1007/s00705-022-05657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/01/2022] [Indexed: 01/08/2023]
Abstract
The whole genome sequence of mulberry crinivirus (MuCV), a novel member of the genus Crinivirus (family Closteroviridae) identified in mulberry (Morus alba L), was determined. The virus possesses a bipartite genome. RNA1 contains 8571 nucleotides (nt) with four open reading frames (ORFs). ORF1a encodes a putative polyprotein with papain-like protease, methyltransferase, and RNA helicase domains. ORF1b putatively encodes an RNA-dependent RNA polymerase (RdRp), which is probably expressed via a + 1 ribosomal frameshift. RNA2 consists of 8082 nt, containing eight ORFs that are similar in size and position to orthologous genes of other criniviruses. Phylogenetic analysis based on RdRp amino acid sequences of criniviruses placed MuCV in group 1.
Collapse
Affiliation(s)
- Peng Zhang
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Tao-Tao Han
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Jia-Xuan Tang
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Kui Zhong
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China.,Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Yu Ma
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - William K Smith
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Wei-Guo Zhao
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China.,Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Quan-You Lu
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China. .,Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China.
| |
Collapse
|
2
|
Kaur N, Chen W, Fei Z, Wintermantel WM. Differences in gene expression in whitefly associated with CYSDV-infected and virus-free melon, and comparison with expression in whiteflies fed on ToCV- and TYLCV-infected tomato. BMC Genomics 2019; 20:654. [PMID: 31416422 PMCID: PMC6694564 DOI: 10.1186/s12864-019-5999-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/26/2019] [Indexed: 01/31/2023] Open
Abstract
Background Cucurbit yellow stunting disorder virus (CYSDV; genus Crinivirus, Closteroviridae) is transmitted in a semipersistent manner by the whitefly, Bemisia tabaci, and is efficiently transmitted by the widely prevalent B. tabaci cryptic species, MEAM1. In this study, we compared transcriptome profiles of B. tabaci MEAM1, after 24 h, 72 h and 7 days of acquisition feeding on melon plants infected with CYSDV (CYSDV-whiteflies) with those fed on virus-free melon, using RNA-Seq technology. We also compared transcriptome profiles with whiteflies fed on tomato plants separately infected with Tomato chlorosis virus (ToCV), a crinivirus closely related to CYSDV, and Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, which has a distinctly different mode of transmission and their respective virus-free controls, to find common gene expression changes among viruliferous whiteflies feeding on different host plants infected with distinct (TYLCV) and related (CYSDV and ToCV) viruses. Results A total of 275 differentially expressed genes (DEGs) were identified in CYSDV-whiteflies, with 3 DEGs at 24 h, 221 DEGs at 72 h, and 51 DEGs at 7 days of virus acquisition. Changes in genes encoding orphan genes (54 genes), phosphatidylethanolamine-binding proteins (PEBP) (20 genes), and AAA-ATPase domain containing proteins (10 genes) were associated with the 72 h time point. Several more orphan genes (20 genes) were differentially expressed at 7 days. A total of 59 common DEGs were found between CYSDV-whiteflies and ToCV-whiteflies, which included 20 orphan genes and 6 lysosomal genes. A comparison of DEGs across the three different virus-host systems revealed 14 common DEGs, among which, eight showed similar and significant up-regulation in CYSDV-whiteflies at 72 h and TYLCV-whiteflies at 24 h, while down-regulation of the same genes was observed in ToCV-whiteflies at 72 h. Conclusions Dynamic gene expression changes occurred in CYSDV-whiteflies after 72 h feeding, with decreased gene expression changes associated with 7 days of CYSDV acquisition. Similarities in gene expression changes among CYSDV-whiteflies, ToCV-whiteflies and TYLCV-whiteflies suggest the possible involvement of common genes or pathways for virus acquisition and transmission by whiteflies, even for viruses with distinctly different modes of transmission. Electronic supplementary material The online version of this article (10.1186/s12864-019-5999-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Navneet Kaur
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA, 93905, USA.,Present Address: Driscoll's Inc., 151 Silliman Rd., Watsonville, CA, 95076, USA
| | - Wenbo Chen
- Boyce Thompson Institute, 533 Tower Road, Ithaca, New York, 14853-1801, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Road, Ithaca, New York, 14853-1801, USA.,USDA-ARS, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, New York, 14853-2901, USA
| | - William M Wintermantel
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA, 93905, USA.
| |
Collapse
|
3
|
Mann KS, Chisholm J, Sanfaçon H. Strawberry Mottle Virus (Family Secoviridae, Order Picornavirales) Encodes a Novel Glutamic Protease To Process the RNA2 Polyprotein at Two Cleavage Sites. J Virol 2019; 93:e01679-18. [PMID: 30541838 PMCID: PMC6384087 DOI: 10.1128/jvi.01679-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 01/29/2023] Open
Abstract
Strawberry mottle virus (SMoV) belongs to the family Secoviridae (order Picornavirales) and has a bipartite genome with each RNA encoding one polyprotein. All characterized secovirids encode a single protease related to the picornavirus 3C protease. The SMoV 3C-like protease was previously shown to cut the RNA2 polyprotein (P2) at a single site between the predicted movement protein and coat protein (CP) domains. However, the SMoV P2 polyprotein includes an extended C-terminal region with a coding capacity of up to 70 kDa downstream of the presumed CP domain, an unusual characteristic for this family. In this study, we identified a novel cleavage event at a P↓AFP sequence immediately downstream of the CP domain. Following deletion of the PAFP sequence, the polyprotein was processed at or near a related PKFP sequence 40 kDa further downstream, defining two protein domains in the C-terminal region of the P2 polyprotein. Both processing events were dependent on a novel protease domain located between the two cleavage sites. Mutagenesis of amino acids that are conserved among isolates of SMoV and of the related Black raspberry necrosis virus did not identify essential cysteine, serine, or histidine residues, suggesting that the RNA2-encoded SMoV protease is not related to serine or cysteine proteases of other picorna-like viruses. Rather, two highly conserved glutamic acid residues spaced by 82 residues were found to be strictly required for protease activity. We conclude that the processing of SMoV polyproteins requires two viral proteases, the RNA1-encoded 3C-like protease and a novel glutamic protease encoded by RNA2.IMPORTANCE Many viruses encode proteases to release mature proteins and intermediate polyproteins from viral polyproteins. Polyprotein processing allows regulation of the accumulation and activity of viral proteins. Many viral proteases also cleave host factors to facilitate virus infection. Thus, viral proteases are key virulence factors. To date, viruses with a positive-strand RNA genome are only known to encode cysteine or serine proteases, most of which are related to the cellular papain, trypsin, or chymotrypsin proteases. Here, we characterize the first glutamic protease encoded by a plant virus or by a positive-strand RNA virus. The novel glutamic protease is unique to a few members of the family Secoviridae, suggesting that it is a recent acquisition in the evolution of this family. The protease does not resemble known cellular proteases. Rather, it is predicted to share structural similarities with a family of fungal and bacterial glutamic proteases that adopt a lectin fold.
Collapse
Affiliation(s)
- Krin S Mann
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Joan Chisholm
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| |
Collapse
|
4
|
Wainaina JM, De Barro P, Kubatko L, Kehoe MA, Harvey J, Karanja D, Boykin LM. Global phylogenetic relationships, population structure and gene flow estimation of Trialeurodes vaporariorum (Greenhouse whitefly). BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:5-13. [PMID: 28532532 DOI: 10.1017/s0007485317000360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Trialeurodes vaporariorum (Westwood, 1856) (Greenhouse whitefly) is an agricultural pest of global importance. It is associated with damage to plants during feeding and subsequent virus transmission. Yet, global phylogenetic relationships, population structure, and estimation of the rates of gene flow within this whitefly species remain largely unexplored. In this study, we obtained and filtered 227 GenBank records of mitochondrial cytochrome c oxidase I (mtCOI) sequences of T. vaporariorum, across various global locations to obtain a final set of 217 GenBank records. We further amplified and sequenced a ~750 bp fragment of mtCOI from an additional 31 samples collected from Kenya in 2014. Based on a total of 248 mtCOI sequences, we identified 16 haplotypes, with extensive overlap across all countries. Population structure analysis did not suggest population differentiation. Phylogenetic analysis indicated the 2014 Kenyan collection of samples clustered with a single sequence from the Netherlands to form a well-supported clade (denoted clade 1a) nested within the total set of sequences (denoted clade 1). Pairwise distances between sequences show greater sequence divergence between clades than within clades. In addition, analysis using migrate-n gave evidence for recent gene flow between the two groups. Overall, we find that T. vaporariorum forms a single large group, with evidence of further diversification consisting primarily of Kenyan sequences and one sequence from the Netherlands forming a well-supported clade.
Collapse
Affiliation(s)
- J M Wainaina
- The University of Western Australia,Australian Research Council Centre of Excellence in Plant Energy Biology and School of Molecular Sciences,Crawley,Perth 6009,Western Australia,Australia
| | - P De Barro
- CSIRO,GPO Box 2583,Brisbane QLD 4001,Australia
| | - L Kubatko
- The Ohio State University 12th Avenue Columbus,Ohio,USA
| | - M A Kehoe
- Departments of Agriculture and Food Western Australia,South Perth WA 6151,Australia
| | - J Harvey
- Feed the Future Innovation Lab for the Reduction of Post-Harvest Loss,Kansas State University,Manhattan,Kansas,USA
| | - D Karanja
- Kenya Agriculture and Livestock Research Organization (KARLO) Box 340-90100,Machakos,Kenya
| | - L M Boykin
- The University of Western Australia,Australian Research Council Centre of Excellence in Plant Energy Biology and School of Molecular Sciences,Crawley,Perth 6009,Western Australia,Australia
| |
Collapse
|
5
|
Polston JE, De Barro P, Boykin LM. Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. PEST MANAGEMENT SCIENCE 2014; 70:1547-52. [PMID: 24464790 DOI: 10.1002/ps.3738] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/16/2014] [Indexed: 05/13/2023]
Abstract
Bemisia tabaci has had a colorful nomenclatural past and is now recognized as a species complex. This new species framework has added many new areas of research including adding new insight into the virus transmission specificity of the species in the B. tabaci species complex. There is a wide disparity in what is known about the transmission of plant viruses by different members of the B. tabaci species complex. In this paper, we have synthesized the transmission specificities of the plant viruses transmitted by species belonging to the complex. There are five genera of plant viruses with members that are transmitted by species of the B. tabaci species complex. The transmission of viruses belonging to two of these, Begomovirus and Crinivirus, are well studied and much is known in regards to the relationship between species and transmission and etiology. This is in contrast to viruses of the genera, Torradovirus and Carlavirus, for which very little is known inregards to their transmission. This is the first attempt to integrate viral data within the new B. tabaci species complex framework. It is clear that matching historical transmission data with the current species framework is difficult due to the lack of awareness of the underlying genetic diversity within B. tabaci. We encourage all researchers to determine which species of B. tabaci they are using to facilitate association of phenotypic traits with particular members of the complex.
Collapse
Affiliation(s)
- Jane E Polston
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
6
|
Orfanidou CG, Dimitriou C, Papayiannis LC, Maliogka VI, Katis NI. Epidemiology and genetic diversity of criniviruses associated with tomato yellows disease in Greece. Virus Res 2014; 186:120-9. [PMID: 24370865 DOI: 10.1016/j.virusres.2013.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/21/2013] [Accepted: 12/10/2013] [Indexed: 11/29/2022]
Abstract
Tomato chlorosis virus (ToCV) and Tomato infectious chlorosis virus (TICV) are two whitefly transmitted viruses which are classified in the genus Crinivirus of the family Closteroviridae. Both induce similar yellowing symptoms in tomato and are responsible for severe economic losses. ToCV is transmitted by Bemisia tabaci Gennadious, Trialeurodes vaporariorum Westwood and Trialeurodes abutilonea Haldeman, whereas TICV is transmitted only by T. vaporariorum. An extensive study was conducted during 2009-2012 in order to identify the virus species involved in tomato yellowing disease in Greece. Samples from tomato, other crops and weeds belonging to 44 species from 26 families were collected and analyzed using molecular methods. In addition, adult whiteflies were collected and analyzed using morphological characters and DNA markers. Results showed that TICV prevailed in tomato crops (62.5%), while ToCV incidence was lower (20.5%) and confined in southern Greece. ToCV was also detected in lettuce plants showing mild yellowing symptoms for the first time in Greece. Approximately 13% of the tested weeds were found to be infected, with TICV being the predominant virus with an incidence of 10.8%, whereas ToCV was detected only in 2.2% of the analyzed samples. These results indicate that the host range of TICV and ToCV in Greece is far more extensive than previously believed. T. vaporariorum was the most widespread whitefly species in Greece (80%), followed by B. tabaci (biotypes B and Q) (20%). Sequence analysis of the CP and CPm genes from Greek tomato and weed isolates of ToCV and TICV showed that even though both viruses have very wide host ranges their populations show very low molecular divergence.
Collapse
Affiliation(s)
- C G Orfanidou
- Aristotle University of Thessaloniki, School of Agriculture, Lab of Plant Pathology, 54124 Thessaloniki, Greece
| | - C Dimitriou
- Aristotle University of Thessaloniki, School of Agriculture, Lab of Plant Pathology, 54124 Thessaloniki, Greece
| | - L C Papayiannis
- Agricultural Research Institute, P.O. Box 22016, Nicosia 1516, Cyprus
| | - V I Maliogka
- Aristotle University of Thessaloniki, School of Agriculture, Lab of Plant Pathology, 54124 Thessaloniki, Greece
| | - N I Katis
- Aristotle University of Thessaloniki, School of Agriculture, Lab of Plant Pathology, 54124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Abstract
Whiteflies are a key pest of crops in open-field production throughout the tropics and subtropics. This is due in large part to the long and diverse list of devastating plant viruses transmitted by these vectors. Open-field production provides many challenges to manage these viruses and in many cases adequate management has not been possible. Diseases caused by whitefly-transmitted viruses have become limiting factors in open-field production of a wide range of crops, i.e., bean golden mosaic disease in beans, tomato yellow leaf curl disease in tomato, cassava mosaic disease and cassava brown streak disease in cassava, and cotton leaf crumple disease in cotton. While host resistance has proven to be the most cost-effective management solution, few examples of host resistance have been developed to date. The main strategy to limit the incidence of virus-infected plants has been the application of insecticides to reduce vector populations aided to some extent by the use of selected cultural practices. However, due to concerns about the effect of insecticides on pollinators, consumer demand for reduced pesticide use, and the ability of the whitefly vectors to develop insecticide-resistance, there is a growing need to develop and deploy strategies that do not rely on insecticides. The reduction in pesticide use will greatly increase the need for genetic resistance to more viruses in more crop plants. Resistance combined with selected IPM strategies could become a viable means to increase yields in crops produced in open fields despite the presence of whitefly-transmitted viruses.
Collapse
|
8
|
Abrahamian PE, Abou-Jawdah Y. Whitefly-transmitted criniviruses of cucurbits: current status and future prospects. Virusdisease 2014; 25:26-38. [PMID: 24426308 PMCID: PMC3889241 DOI: 10.1007/s13337-013-0173-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022] Open
Abstract
In the past decade, crinviruses have gained interest due to their rapid widespread and destructive nature for cucurbit cultivation. Several members of the genus Crinivirus are considered emerging viruses. Currently, four criniviruses: Beet pseudo-yellows virus, Cucurbit chlorotic yellows virus, Cucurbit yellow stunting disorder virus and Lettuce infectious yellows virus have been reported to infect field- or greenhouse- grown cucurbits. Apart from their cucurbit hosts, criniviruses infect other cash crops and weeds. Criniviruses are exclusively transmitted by whiteflies. The virion titer and the vector genus or species complex are predominant factors affecting virus transmission. These criniviruses maintain genetic stability with limited intra-species variability. They share similar core genome structure and replication strategies with some variations in the non-core proteins and downstream replication processes. Management of the diseases induced by criniviruses relies on integrated disease management strategies and on resistant varieties, when available. This review will cover their epidemiology, molecular biology, detection and management.
Collapse
Affiliation(s)
- Peter E. Abrahamian
- Department of Agricultural Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, 1107 2020 Lebanon
| | - Yusuf Abou-Jawdah
- Department of Agricultural Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, 1107 2020 Lebanon
| |
Collapse
|
9
|
Poudel B, Wintermantel WM, Cortez AA, Ho T, Khadgi A, Tzanetakis IE. Epidemiology of Blackberry yellow vein associated virus. PLANT DISEASE 2013; 97:1352-1357. [PMID: 30722181 DOI: 10.1094/pdis-01-13-0018-re] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Blackberry yellow vein disease is one of the most important diseases of blackberry in the United States. Several viruses are found associated with the symptomology but Blackberry yellow vein associated virus (BYVaV) appears to be the most prevalent of all, leading to the need for a better understanding of its epidemiology. Efficient detection protocols were developed using end-point and quantitative reverse-transcription polymerase chain reaction. A multi-state survey was performed on wild and cultivated blackberry to assess the geographical distribution of the virus. Two whitefly species, Trialeurodes abutilonea and T. vaporariorum, were identified as vectors and 25 plant species were tested as potential BYVaV hosts. The information obtained in this study can be used at multiple levels to better understand and control blackberry yellow vein disease.
Collapse
Affiliation(s)
- Bindu Poudel
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| | - William M Wintermantel
- United States Department of Agriculture-Agricultural Research Service, Salinas, CA 93905
| | - Arturo A Cortez
- United States Department of Agriculture-Agricultural Research Service, Salinas, CA 93905
| | - Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System
| | - Archana Khadgi
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System
| |
Collapse
|
10
|
Tzanetakis IE, Martin RR, Wintermantel WM. Epidemiology of criniviruses: an emerging problem in world agriculture. Front Microbiol 2013; 4:119. [PMID: 23730300 PMCID: PMC3656352 DOI: 10.3389/fmicb.2013.00119] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/26/2013] [Indexed: 11/13/2022] Open
Abstract
The genus Crinivirus includes the whitefly-transmitted members of the family Closteroviridae. Whitefly-transmitted viruses have emerged as a major problem for world agriculture and are responsible for diseases that lead to losses measured in the billions of dollars annually. Criniviruses emerged as a major agricultural threat at the end of the twentieth century with the establishment and naturalization of their whitefly vectors, members of the genera Trialeurodes and Bemisia, in temperate climates around the globe. Several criniviruses cause significant diseases in single infections whereas others remain asymptomatic and only cause disease when found in mixed infections with other viruses. Characterization of the majority of criniviruses has been done in the last 20 years and this article provides a detailed review on the epidemiology of this important group of viruses.
Collapse
Affiliation(s)
- Ioannis E. Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of ArkansasFayetteville, AR, USA
| | - Robert R. Martin
- Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research ServiceCorvallis, OR, USA
| | - William M. Wintermantel
- Crop Improvement and Protection Research Unit, United States Department of Agriculture-Agricultural Research ServiceSalinas, CA, USA
| |
Collapse
|
11
|
Mongkolsiriwattana C, Chen AYS, Ng JCK. Replication of Lettuce chlorosis virus (LCV), a crinivirus in the family Closteroviridae, is accompanied by the production of LCV RNA 1-derived novel RNAs. Virology 2011; 420:89-97. [PMID: 21945036 DOI: 10.1016/j.virol.2011.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 07/31/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022]
Abstract
Cloned infectious complementary DNAs of the bipartite genomic RNAs of Lettuce chlorosis virus (LCV) were constructed. Inoculation of tobacco protoplasts with the in vitro produced RNAs 1 and 2 transcripts, or with RNA 1 transcript alone, resulted in viral replication accompanied by the production of novel LCV RNA 1-derived RNAs. They included the abundantly accumulating LM-LCVR1-1 (~0.38 kb) and LM-LCVR1-2 (~0.3 kb), and the lowly accumulating HM-LCVR1-1 (~8.0 kb) and HM-LCVR1-2 (~6.6 kb), all of which reacted with riboprobes specific to the 5' end of RNA 1 in Northern blot analysis. LM-LCVR1-1 and HM-LCVR1-2 accumulated as positive-stranded RNAs that lacked complementary negative strands, while HM-LCVR1-1 and LM-LCVR1-2 accumulated in both polarities. Additional Northern blot, reverse transcription-polymerase chain reaction, cloning, and sequence analyses revealed LM-LCVR1-2 to be an authentic RNA 1-derived defective (D)RNA, suggesting that its synthesis and maintenance are supported in trans by an RNA 1 encoded replication machinery.
Collapse
|
12
|
Diodia vein chlorosis virus is a group-1 crinivirus. Arch Virol 2011; 156:2033-7. [DOI: 10.1007/s00705-011-1055-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
|
13
|
Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S. Emerging virus diseases transmitted by whiteflies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:219-48. [PMID: 21568700 DOI: 10.1146/annurev-phyto-072910-095235] [Citation(s) in RCA: 486] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Virus diseases that have emerged in the past two decades limit the production of important vegetable crops in tropical, subtropical, and temperate regions worldwide, and many of the causal viruses are transmitted by whiteflies (order Hemiptera, family Aleyrodidae). Most of these whitefly-transmitted viruses are begomoviruses (family Geminiviridae), although whiteflies are also vectors of criniviruses, ipomoviruses, torradoviruses, and some carlaviruses. Factors driving the emergence and establishment of whitefly-transmitted diseases include genetic changes in the virus through mutation and recombination, changes in the vector populations coupled with polyphagy of the main vector, Bemisia tabaci, and long distance traffic of plant material or vector insects due to trade of vegetables and ornamental plants. The role of humans in increasing the emergence of virus diseases is obvious, and the effect that climate change may have in the future is unclear.
Collapse
Affiliation(s)
- Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain.
| | | | | |
Collapse
|
14
|
Wintermantel WM, Hladky LL. Methods for detection and differentiation of existing and new crinivirus species through multiplex and degenerate primer RT-PCR. J Virol Methods 2010; 170:106-14. [PMID: 20833203 DOI: 10.1016/j.jviromet.2010.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/28/2010] [Accepted: 09/02/2010] [Indexed: 11/16/2022]
Abstract
A method was developed for rapid identification and differentiation of both known and novel crinivirus species involving both multiplex and degenerate reverse transcription-polymerase chain reaction (RT-PCR). The multiplex method can discriminate among known criniviruses infecting vegetable and small fruit crops, and rapidly identify viruses associated with disease symptoms, as well as identification of mixed crinivirus infections. Four host groups for multiplex detection of criniviruses were selected based on the types of crops where specific criniviruses would be expected to occur. Each detection group contained three to four crop-specific primers designed to the same region of the gene encoding the highly conserved RNA-dependent RNA polymerase gene (RdRp) of criniviruses for rapid, single-reaction determination of which crinivirus(es) may be infecting a plant. Degenerate reverse primers used for RT and in PCR were designed to amplify all members of each host group, and were coupled with species-specific forward primers resulting in four separate single-reaction cocktails for detection of most criniviruses sequenced to date, whether present in single or mixed virus infections. Additional viruses can be added to multiplex detection by adjustment of primer concentration for balanced detection of target viruses. In order to identify unknown putative criniviruses or those for which sequence information is not yet available, a genus-wide, universal degenerate primer set was developed. These primers also targeted the crinivirus RdRp gene, and amplify a wide range of crinivirus sequences. Both detection systems can be used with most RNA extraction methods, and with RT-PCR reagents common in most laboratories.
Collapse
|