1
|
Akram M, Kamaal N, Kumar D, Datta D, Agnihotri AK. Characterization, phylogeny and recombination of Rhynchosia yellow mosaic virus infecting Rhynchosia minima, a wild relative of pigeonpea (Cajanus cajan) from India. Virus Genes 2025; 61:110-120. [PMID: 39503983 DOI: 10.1007/s11262-024-02120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/22/2024] [Indexed: 02/02/2025]
Abstract
Rhynchosia minima grown at Indian Institute of Pulses Research, Kanpur, India, showed yellow mosaic symptoms on leaves and were suspected to be caused by begomovirus(es). Leaves from five different plants (Rhm1-Rhm5) were tested for the presence of four viruses in PCR. PCR assays revealed the presence of mungbean yellow mosaic India virus in four samples, whereas one sample (Rhm2) was negative. Processing of Rhm2 sample using rolling circle amplification and restriction digestion indicated the presence of DNA molecules of ~ 2.6-2.7 kb. These molecules were sequenced after cloning and found to be of 2741 and 2658 nucleotides in size. BLAST analysis revealed that DNA-A (OQ269467) and DNA-B (OQ269468) molecules of rhynchosia yellow mosaic virus (RhYMV) with 99.09% and 93.74% nucleotide similarity with DNA-A (KP752090) and DNA-B (KP752091) of the RhYMV isolate, respectively. These sequences had a genome organization typical of legume-infecting Old World bipartite begomoviruses. Full genome sequences obtained from Rhm2 are, therefore, considered to be an isolate of RhYMV, designated as RhYMV-IN-Knp. The phylogenetic analysis revealed that RhYMV-IN-Knp was grouped with other isolates of RhYMV followed by Cajanus scarabaeoides yellow mosaic virus. DNA-A of RhYMV-IN-Knp showed two recombination events. The Old World bipartite begomovirus squash leaf curl China virus (AM260205) was identified as the major parent, whereas New World bipartite begomovirus rhynchosia golden yellow mosaic Yucatan virus (EU021216) was identified as the minor parent. RhYMV holds the potential of infecting cultivated legume crops, therefore regular monitoring is crucial especially for pigeonpea breeding programs.
Collapse
Affiliation(s)
- Mohammad Akram
- Division of Crop Protection, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India.
| | - Naimuddin Kamaal
- Division of Crop Protection, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| | - Deepender Kumar
- Division of Crop Protection, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| | - Dibendu Datta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| | - Aniruddha Kumar Agnihotri
- Division of Crop Protection, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| |
Collapse
|
2
|
Dokka N, Marathe A, Sahu B, Kaushal P, Ghosh PK, Sivalingam PN. Cajanus Scarabaeoides Yellow Mosaic Virus, a New Bipartite Begomovirus Causing Yellow Mosaic Disease in Cajanus scarabaeoides in India. PLANT DISEASE 2023; 107:2924-2928. [PMID: 36890129 DOI: 10.1094/pdis-06-22-1473-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Yellow mosaic disease of Cajanus scarabaeoides (L.) Thouars (CsYMD) was observed in up to 46% of C. scarabaeoides plants in the mungbean, urdbean, and pigeon pea fields from 22 districts of Chhattisgarh State, India, during 2017 to 2019. The symptoms were characterized by yellow mosaic on green leaves and yellow discoloration of leaves in advanced stages of the disease. Severely infected plants showed shortened internodal length and reduced leaf size. CsYMD was transmissible to healthy C. scarabaeoides and C. cajan by whitefly (Bemisia tabaci). The infected plants developed typical yellow mosaic symptoms on their leaves within 16 and 22 days of inoculation, respectively, suggesting a begomovirus etiology. Molecular analysis revealed that this begomovirus has a bipartite genome composed of DNA-A (2,729 nucleotides) and DNA-B (2,630 nucleotides). Sequence and phylogenetic analyses revealed that the nucleotide sequence of the DNA-A component had the highest identity of 81.1% with DNA-A of Rhynchosia yellow mosaic virus (RhYMV; NC_038885), followed by mungbean yellow mosaic virus (MN602427; 75.3%). DNA-B had the highest identity of 74.0% with DNA-B of RhYMV (NC_038886). As per ICTV guidelines, this isolate had <91% nucleotide identity with DNA-A of any of the begomoviruses reported; so, it is proposed as a new begomovirus species, tentatively named C. scarabaeoides yellow mosaic virus (CsYMV). After agroinoculation with DNA-A and DNA-B clones of CsYMV, all Nicotiana benthamiana plants developed leaf curl symptoms along with light yellowing symptoms 8 to 10 days after inoculation (DAI), while ∼60% of the C. scarabaeoides plants developed yellow mosaic symptoms similar to those observed in the field 18 DAI, thus fulfilling Koch's postulates. From these agro-infected C. scarabaeoides plants, CsYMV was transmissible to healthy C. scarabaeoides plants by B. tabaci. Apart from these hosts, CsYMV also infected and caused symptoms in mungbean and pigeon pea.
Collapse
Affiliation(s)
- Narasimham Dokka
- Indian Council of Agricultural Research-National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India
| | - Ashish Marathe
- Indian Council of Agricultural Research-National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India
| | - Bhimeshwari Sahu
- Indian Council of Agricultural Research-National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India
| | - Pankaj Kaushal
- Indian Council of Agricultural Research-National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India
| | - Probir Kumar Ghosh
- Indian Council of Agricultural Research-National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India
| | | |
Collapse
|
3
|
Fiallo-Olivé E, Bastidas L, Chirinos DT, Navas-Castillo J. Insights into Emerging Begomovirus-Deltasatellite Complex Diversity: The First Deltasatellite Infecting Legumes. BIOLOGY 2021; 10:1125. [PMID: 34827118 PMCID: PMC8615175 DOI: 10.3390/biology10111125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
Begomoviruses and associated DNA satellites are involved in pathosystems that include many cultivated and wild dicot plants and the whitefly vector Bemisia tabaci. A survey of leguminous plants, both crops and wild species, was conducted in Venezuela, an understudied country, to determine the presence of begomoviruses. Molecular analysis identified the presence of bipartite begomoviruses in 37% of the collected plants. Four of the six begomoviruses identified constituted novel species, and two others had not been previously reported in Venezuela. In addition, a novel deltasatellite (cabbage leaf curl deltasatellite, CabLCD) was found to be associated with cabbage leaf curl virus (CabLCV) in several plant species. CabLCD was the first deltasatellite found to infect legumes and the first found in the New World to infect a crop plant. Agroinoculation experiments using Nicotiana benthamiana plants and infectious viral clones confirmed that CabLCV acts as a helper virus for CabLCD. The begomovirus-deltasatellite complex described here is also present in wild legume plants, suggesting the possible role of these plants in the emergence and establishment of begomoviral diseases in the main legume crops in the region. Pathological knowledge of these begomovirus-deltasatellite complexes is fundamental to develop control methods to protect leguminous crops from the diseases they cause.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Avenida Dr. Wienberg s/n, 29750 Algarrobo-Costa, Málaga, Spain;
| | - Liseth Bastidas
- Departamento Fitosanitario, Facultad de Agronomía, Universidad del Zulia, Maracaibo 4005, Zulia, Venezuela;
| | - Dorys T. Chirinos
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Portoviejo 130105, Manabí, Ecuador;
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Avenida Dr. Wienberg s/n, 29750 Algarrobo-Costa, Málaga, Spain;
| |
Collapse
|
4
|
Rodríguez-Negrete EA, Morales-Aguilar JJ, Domínguez-Duran G, Torres-Devora G, Camacho-Beltrán E, Leyva-López NE, Voloudakis AE, Bejarano ER, Méndez-Lozano J. High-Throughput Sequencing Reveals Differential Begomovirus Species Diversity in Non-Cultivated Plants in Northern-Pacific Mexico. Viruses 2019; 11:v11070594. [PMID: 31261973 PMCID: PMC6669537 DOI: 10.3390/v11070594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Plant DNA viruses of the genus Begomovirus have been documented as the most genetically diverse in the family Geminiviridae and present a serious threat for global horticultural production, especially considering climate change. It is important to characterize naturally existing begomoviruses, since viral genetic diversity in non-cultivated plants could lead to future disease epidemics in crops. In this study, high-throughput sequencing (HTS) was employed to determine viral diversity of samples collected in a survey performed during 2012–2016 in seven states of Northern-Pacific Mexico, areas of diverse climatic conditions where different vegetable crops are subject to intensive farming. In total, 132 plant species, belonging to 34 families, were identified and sampled in the natural ecosystems surrounding cultivated areas (agro-ecological interface). HTS analysis and subsequent de novo assembly revealed a number of geminivirus-related DNA signatures with 80 to 100% DNA similarity with begomoviral sequences present in the genome databank. The analysis revealed DNA signatures corresponding to 52 crop-infecting and 35 non-cultivated-infecting geminiviruses that, interestingly, were present in different plant species. Such an analysis deepens our knowledge of geminiviral diversity and could help detecting emerging viruses affecting crops in different agro-climatic regions.
Collapse
Affiliation(s)
- Edgar Antonio Rodríguez-Negrete
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Juan José Morales-Aguilar
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Gustavo Domínguez-Duran
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Gadiela Torres-Devora
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Erika Camacho-Beltrán
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Norma Elena Leyva-López
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Jesús Méndez-Lozano
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico.
| |
Collapse
|
5
|
Fiallo-Olivé E, Chirinos DT, Geraud-Pouey F, Navas-Castillo J. Complete genome sequence of jacquemontia yellow vein virus, a novel begomovirus infecting Jacquemontia tamnifolia in Venezuela. Arch Virol 2017; 162:2463-2466. [PMID: 28434100 DOI: 10.1007/s00705-017-3372-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Wild plants of the family Convolvulaceae are hosts for a few New World begomoviruses (genus Begomovirus, family Geminiviridae). In this work, we report the complete genome sequence of a new begomovirus infecting the wild convolvulaceous plant Jacquemontia tamnifolia in Venezuela. The cloned bipartite genome showed the organization of typical New World begomoviruses and was found to be phylogenetically related to those of begomoviruses from Venezuela and other Caribbean countries. Several recombination events have been shown to have occurred involving genome fragment exchange with related begomoviruses infecting crops such as tomato and cucurbits and wild plants, including Jacquemontia sp. We propose the name jacquemontia yellow vein virus (JacYVV) for this new begomovirus.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750, Algarrobo-Costa, Málaga, Spain.
| | - Dorys T Chirinos
- Unidad Técnica Fitosanitaria, Facultad de Agronomía, Universidad del Zulia, Maracaibo, 4005, Zulia, Venezuela.,Laboratorio de Entomología, Facultad de Ciencias Agrarias, Universidad Agraria del Ecuador, Guayaquil, Ecuador
| | - Francis Geraud-Pouey
- Unidad Técnica Fitosanitaria, Facultad de Agronomía, Universidad del Zulia, Maracaibo, 4005, Zulia, Venezuela
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750, Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
6
|
Brown J, Mills-Lujan K, Idris AM. Phylogenetic analysis of Melon chlorotic leaf curl virus from Guatemala: Another emergent species in the Squash leaf curl virus clade. Virus Res 2011; 158:257-62. [DOI: 10.1016/j.virusres.2011.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 02/05/2011] [Accepted: 03/06/2011] [Indexed: 11/24/2022]
|
7
|
Molecular characterization of a new begomovirus infecting a leguminous weed Rhynchosia minima in India. Virus Genes 2011; 42:407-14. [PMID: 21318241 DOI: 10.1007/s11262-011-0580-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
A begomovirus associated with yellow mosaic disease in Rhynchosia minima, a common weed was cloned and sequenced. The virus has a bipartite genome, of which DNA-A is 2727 nucleotide length, and DNA-B 2679 nucleotides, and has a typical Old World bipartite begomovirus genome organization. Sequence comparison to all other begomovirus sequences available in the database shows the virus isolated from R. minima to be distinct. Maximum identity of 84% was seen with an isolate of Velvet bean severe mosaic virus-(India: Lucknow:2009) VBSMV-(IN:Luc:09) (GeneBank Accession No. FN543425), while less than 73% identity was observed with any other legumovirus. The molecular data show that the virus identified here is a new species in the genus Begomovirus for which the name Rhynchosia yellow mosaic India virus is proposed.
Collapse
|
8
|
Gregorio-Jorge J, Bernal-Alcocer A, Bañuelos-Hernández B, Alpuche-Solís ÁG, Hernández-Zepeda C, Moreno-Valenzuela O, Frías-Treviño G, Argüello-Astorga GR. Analysis of a new strain of Euphorbia mosaic virus with distinct replication specificity unveils a lineage of begomoviruses with short Rep sequences in the DNA-B intergenic region. Virol J 2010; 7:275. [PMID: 20958988 PMCID: PMC2974675 DOI: 10.1186/1743-422x-7-275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/19/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Euphorbia mosaic virus (EuMV) is a member of the SLCV clade, a lineage of New World begomoviruses that display distinctive features in their replication-associated protein (Rep) and virion-strand replication origin. The first entirely characterized EuMV isolate is native from Yucatan Peninsula, Mexico; subsequently, EuMV was detected in weeds and pepper plants from another region of Mexico, and partial DNA-A sequences revealed significant differences in their putative replication specificity determinants with respect to EuMV-YP. This study was aimed to investigate the replication compatibility between two EuMV isolates from the same country. RESULTS A new isolate of EuMV was obtained from pepper plants collected at Jalisco, Mexico. Full-length clones of both genomic components of EuMV-Jal were biolistically inoculated into plants of three different species, which developed symptoms indistinguishable from those induced by EuMV-YP. Pseudorecombination experiments with EuMV-Jal and EuMV-YP genomic components demonstrated that these viruses do not form infectious reassortants in Nicotiana benthamiana, presumably because of Rep-iteron incompatibility. Sequence analysis of the EuMV-Jal DNA-B intergenic region (IR) led to the unexpected discovery of a 35-nt-long sequence that is identical to a segment of the rep gene in the cognate viral DNA-A. Similar short rep sequences ranging from 35- to 51-nt in length were identified in all EuMV isolates and in three distinct viruses from South America related to EuMV. These short rep sequences in the DNA-B IR are positioned downstream to a ~160-nt non-coding domain highly similar to the CP promoter of begomoviruses belonging to the SLCV clade. CONCLUSIONS EuMV strains are not compatible in replication, indicating that this begomovirus species probably is not a replicating lineage in nature. The genomic analysis of EuMV-Jal led to the discovery of a subgroup of SLCV clade viruses that contain in the non-coding region of their DNA-B component, short rep gene sequences located downstream to a CP-promoter-like domain. This assemblage of DNA-A-related sequences within the DNA-B IR is reminiscent of polyomavirus microRNAs and could be involved in the posttranscriptional regulation of the cognate viral rep gene, an intriguing possibility that should be experimentally explored.
Collapse
Affiliation(s)
- Josefat Gregorio-Jorge
- Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José, 78216 San Luís Potosí, SLP, México
| | - Artemiza Bernal-Alcocer
- Universidad Autónoma Agraria Antonio Narro. Departamento de Parasitología Agrícola. Bellavista, C.P. 25315, Saltillo, Coahuila, Mexico
| | - Bernardo Bañuelos-Hernández
- Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José, 78216 San Luís Potosí, SLP, México
| | - Ángel G Alpuche-Solís
- Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José, 78216 San Luís Potosí, SLP, México
| | | | | | - Gustavo Frías-Treviño
- Universidad Autónoma Agraria Antonio Narro. Departamento de Parasitología Agrícola. Bellavista, C.P. 25315, Saltillo, Coahuila, Mexico
| | - Gerardo R Argüello-Astorga
- Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José, 78216 San Luís Potosí, SLP, México
| |
Collapse
|
9
|
Two novel begomoviruses belonging to different lineages infecting Rhynchosia minima. Arch Virol 2010; 155:2053-8. [DOI: 10.1007/s00705-010-0803-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
|