1
|
Xu J, Li X, Kang G, Bai L, Wang P, Huang H. Isolation and Characterization of AbTJ, an Acinetobacter baumannii Phage, and Functional Identification of Its Receptor-Binding Modules. Viruses 2020; 12:205. [PMID: 32059512 PMCID: PMC7077233 DOI: 10.3390/v12020205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
A. baumannii is an opportunistic pathogen and a major cause of various community-acquired infections. Strains of this species can be resistant to multiple antimicrobial agents, leaving limited therapeutic options, also lacking in methods for accurate and prompt diagnosis. In this context, AbTJ, a novel phage that infects A. baumannii MDR-TJ, was isolated and characterized, together with its two tail fiber proteins. Morphological analysis revealed that it belongs to Podoviridae family. Its host range, growth characteristics, stability under various conditions, and genomic sequence, were systematically investigated. Bioinformatic analysis showed that AbTJ consists of a circular, double-stranded 42670-bp DNA molecule which contains 62 putative open reading frames (ORFs). Genome comparison revealed that the phage AbTJ is related to the Acinetobacter phage Ab105-1phi (No. KT588074). Tail fiber protein (TFPs) gp52 and gp53 were then identified and confirmed as species-specific proteins. By using a combination of bioluminescent methods and magnetic beads, these TFPs exhibit excellent specificity to detect A. baumannii. The findings of this study can be used to help control opportunistic infections and to provide pathogen-binding modules for further construction of engineered bacteria of diagnosis and treatment.
Collapse
Affiliation(s)
- Jingzhi Xu
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaobo Li
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin 300392, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Liang Bai
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ping Wang
- Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin 300392, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China; (J.X.); (X.L.); (G.K.); (L.B.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Feyereisen M, Mahony J, Neve H, Franz CMAP, Noben JP, O’Sullivan T, Boer V, van Sinderen D. Biodiversity and Classification of Phages Infecting Lactobacillus brevis. Front Microbiol 2019; 10:2396. [PMID: 31681247 PMCID: PMC6805780 DOI: 10.3389/fmicb.2019.02396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Lactobacillus brevis is a lactic acid bacterium that is known as a food and beverage spoilage organism, and more specifically as a beer-spoiler. Phages of L. brevis have been described, but very limited data is available regarding temperate phages of L. brevis. Temperate phages may exert benefits to the host, while they may also be employed to combat beer spoilage. The current study reports on the incidence of prophage sequences present in nineteen distinct L. brevis genomes. Prophage induction was evaluated using mitomycin C exposure followed by genome targeted-PCR, electron microscopy and structural proteome analysis. The morphological and genome sequence analyses revealed significant diversity among L. brevis prophages, which appear to be dominated by members of the Myoviridae phage family. Based on this analysis, we propose a classification of L. brevis phages into five groups.
Collapse
Affiliation(s)
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Horst Neve
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, Kiel, Germany
| | - Charles M. A. P. Franz
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, Kiel, Germany
| | - Jean-Paul Noben
- Department Physiology Biochemistry and Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tadhg O’Sullivan
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, Zoeterwoude, Netherlands
| | - Viktor Boer
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, Zoeterwoude, Netherlands
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Feyereisen M, Mahony J, Kelleher P, Roberts RJ, O'Sullivan T, Geertman JMA, van Sinderen D. Comparative genome analysis of the Lactobacillus brevis species. BMC Genomics 2019; 20:416. [PMID: 31122208 PMCID: PMC6533708 DOI: 10.1186/s12864-019-5783-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/07/2019] [Indexed: 01/05/2023] Open
Abstract
Background Lactobacillus brevis is a member of the lactic acid bacteria (LAB), and strains of L. brevis have been isolated from silage, as well as from fermented cabbage and other fermented foods. However, this bacterium is also commonly associated with bacterial spoilage of beer. Results In the current study, complete genome sequences of six isolated L. brevis strains were determined. Five of these L. brevis strains were isolated from beer (three isolates) or the brewing environment (two isolates), and were characterized as beer-spoilers or non-beer spoilers, respectively, while the sixth isolate had previously been isolated from silage. The genomic features of 19 L. brevis strains, encompassing the six L. brevis strains described in this study and thirteen L. brevis strains for which complete genome sequences were available in public databases, were analyzed with particular attention to evolutionary aspects and adaptation to beer. Conclusions Comparative genomic analysis highlighted evolution of the taxon allowing niche colonization, notably adaptation to the beer environment, with approximately 50 chromosomal genes acquired by L. brevis beer-spoiler strains representing approximately 2% of their total chromosomal genetic content. These genes primarily encode proteins that are putatively involved in oxidation-reduction reactions, transcription regulation or membrane transport, functions that may be crucial to survive the harsh conditions associated with beer. The study emphasized the role of plasmids in beer spoilage with a number of unique genes identified among L. brevis beer-spoiler strains.
Collapse
Affiliation(s)
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Philip Kelleher
- School of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
4
|
Feyereisen M, Mahony J, Lugli GA, Ventura M, Neve H, Franz CMAP, Noben JP, O'Sullivan T, Sinderen DV. Isolation and Characterization of Lactobacillus brevis Phages. Viruses 2019; 11:v11050393. [PMID: 31035495 PMCID: PMC6563214 DOI: 10.3390/v11050393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022] Open
Abstract
Lactobacillus brevis has been widely used in industry for fermentation purposes. However, it is also associated with the spoilage of foods and beverages, in particular, beer. There is an increasing demand for natural food preservation methods, and in this context, bacteriophages possess the potential to control such spoilage bacteria. Just a few studies on phages infecting Lactobacillus brevis have been performed to date and in the present study, we report the isolation and characterization of five virulent phages capable of infecting Lb. brevis strains. The analysis reveals a high diversity among the isolates, with members belonging to both, the Myoviridae and Siphoviridae families. One isolate, designated phage 3-521, possesses a genome of 140.8 kb, thus representing the largest Lb. brevis phage genome sequenced to date. While the isolated phages do not propagate on Lb. brevis beer-spoiling strains, phages showed activity against these strains, impairing the growth of some Lb. brevis strains. The results highlight the potential of bacteriophage-based treatments as an effective approach to prevent bacterial spoilage of beer.
Collapse
Affiliation(s)
- Marine Feyereisen
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
| | - Jennifer Mahony
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
- APC Microbiome Ireland, University College of Cork, T12 YT20 Cork, Ireland.
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Horst Neve
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, 24103, Kiel, Germany.
| | - Charles M A P Franz
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, 24103, Kiel, Germany.
| | - Jean-Paul Noben
- Department Physiology Biochemistry and Immunology, Biomedical Research Institute, Hasselt University, B-3590 Diepenbeek, Belgium.
| | - Tadhg O'Sullivan
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, 2382 Zoeterwoude, The Netherlands.
| | - Douwe van Sinderen
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
- APC Microbiome Ireland, University College of Cork, T12 YT20 Cork, Ireland.
| |
Collapse
|
5
|
Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei. Appl Environ Microbiol 2015; 82:95-105. [PMID: 26475105 DOI: 10.1128/aem.02723-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/11/2015] [Indexed: 01/21/2023] Open
Abstract
Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts.
Collapse
|
6
|
Mahony J, van Sinderen D. Current taxonomy of phages infecting lactic acid bacteria. Front Microbiol 2014; 5:7. [PMID: 24478767 PMCID: PMC3900856 DOI: 10.3389/fmicb.2014.00007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/07/2014] [Indexed: 01/29/2023] Open
Abstract
Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp., and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork Cork, Ireland
| | - Douwe van Sinderen
- Department of Microbiology, University College Cork Cork, Ireland ; Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork Cork, Ireland
| |
Collapse
|
7
|
Fukao M, Oshima K, Morita H, Toh H, Suda W, Kim SW, Suzuki S, Yakabe T, Hattori M, Yajima N. Genomic analysis by deep sequencing of the probiotic Lactobacillus brevis KB290 harboring nine plasmids reveals genomic stability. PLoS One 2013; 8:e60521. [PMID: 23544154 PMCID: PMC3609814 DOI: 10.1371/journal.pone.0060521] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/28/2013] [Indexed: 11/18/2022] Open
Abstract
We determined the complete genome sequence of Lactobacillus brevis KB290, a probiotic lactic acid bacterium isolated from a traditional Japanese fermented vegetable. The genome contained a 2,395,134-bp chromosome that housed 2,391 protein-coding genes and nine plasmids that together accounted for 191 protein-coding genes. KB290 contained no virulence factor genes, and several genes related to presumptive cell wall-associated polysaccharide biosynthesis and the stress response were present in L. brevis KB290 but not in the closely related L. brevis ATCC 367. Plasmid-curing experiments revealed that the presence of plasmid pKB290-1 was essential for the strain's gastrointestinal tract tolerance and tendency to aggregate. Using next-generation deep sequencing of current and 18-year-old stock strains to detect low frequency variants, we evaluated genome stability. Deep sequencing of four periodic KB290 culture stocks with more than 1,000-fold coverage revealed 3 mutation sites and 37 minority variation sites, indicating long-term stability and providing a useful method for assessing the stability of industrial bacteria at the nucleotide level.
Collapse
Affiliation(s)
- Masanori Fukao
- Research Institute, KAGOME Co., Ltd., Nasushiobara, Tochigi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|