1
|
Lin Y, Zhou L, Xiao C, Li Z, Liu K, Li B, Shao D, Qiu Y, Ma Z, Wei J. Development and biological characterization of an infectious cDNA clone of NADC34-like PRRSV. Front Microbiol 2024; 15:1359970. [PMID: 38800747 PMCID: PMC11123230 DOI: 10.3389/fmicb.2024.1359970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Porcine Reproductive and Respiratory Syndrome virus (PRRSV) causes high abortion rates in gestating sows and stillbirths, as well as high piglet mortality, seriously jeopardizing the pig industry in China and worldwide. Methods In this study, an infectious clone containing the full-length genome of NADC34-like PRRSV was constructed for the first time using reverse genetic techniques. The gene was amplified segmentally onto a plasmid, transfected into BHK-21 cells, and the transfected supernatant was harvested and transfected into PAM cells, which showed classical cytopathic effects (CPE). Results The virus rJS-KS/2021 was successfully rescued which could be demonstrated by Western Blot and indirect immunofluorescence assays. Its growth curve was similar to the original strain. Replace the 5'UTR and 3'UTR of rJS-KS/2021 with 5'UTR and 3'UTR of HP-PRRSV (strain SH1) also failed to propagate on MARC-145. Discussion In this study, an infectious clone of NADC34-like was constructed by reverse genetics, replacing the UTR and changing the cellular tropism of the virus. These findings provide a solid foundation for studying the recombination of different PRRSVs and the adaption of PRRSVs on MARC-145 in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
2
|
Li S, Zhang X, Yao Y, Zhu Y, Zheng X, Liu F, Feng W. Inducible miR-150 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication by Targeting Viral Genome and Suppressor of Cytokine Signaling 1. Viruses 2022; 14:1485. [PMID: 35891465 PMCID: PMC9318191 DOI: 10.3390/v14071485] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Hosts exploit various approaches to defend against porcine reproductive and respiratory syndrome virus (PRRSV) infection. microRNAs (miRNAs) have emerged as key negative post-transcriptional regulators of gene expression and have been reported to play important roles in regulating virus infection. Here, we identified that miR-150 was differentially expressed in virus permissive and non-permissive cells. Subsequently, we demonstrated that PRRSV induced the expression of miR-150 via activating the protein kinase C (PKC)/c-Jun amino-terminal kinases (JNK)/c-Jun pathway, and overexpression of miR-150 suppressed PRRSV replication. Further analysis revealed that miR-150 not only directly targeted the PRRSV genome, but also facilitated type I IFN signaling. RNA immunoprecipitation assay demonstrated that miR-150 targeted the suppressor of cytokine signaling 1 (SOCS1), which is a negative regulator of Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) signaling pathway. The inverse correlation between miR-150 and SOCS1 expression implies that miR-150 plays a role in regulating ISG expression. In conclusion, miR-150 expression is upregulated upon PRRSV infection. miR-150 feedback positively targets the PRRSV genome and promotes type I IFN signaling, which can be seen as a host defensive strategy.
Collapse
Affiliation(s)
- Sihan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yao Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingqi Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojie Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Xiong J, Cui X, Zhao K, Wang Q, Huang X, Li D, Yu F, Yang Y, Liu D, Tian Z, Cai X, An T. A Novel Motif in the 3′-UTR of PRRSV-2 Is Critical for Viral Multiplication and Contributes to Enhanced Replication Ability of Highly Pathogenic or L1 PRRSV. Viruses 2022; 14:v14020166. [PMID: 35215760 PMCID: PMC8875199 DOI: 10.3390/v14020166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) with enhanced replication capability emerged in China and has become dominant epidemic strain since 2006. Up to now, the replication-regulated genes of PRRSV have not been fully clarified. Here, by swapping the genes or elements between HP-PRRSV and classical PRRSV based on infectious clones, NSP1, NSP2, NSP7, NSP9 and 3′-UTR are found to contribute to the high replication efficiency of HP-PRRSV. Further study revealed that mutations at positions 117th or 119th in the 3′-UTR are significantly related to replication efficiency, and the nucleotide at position 120th is critical for viral rescue. The motif composed by 117–120th nucleotides was quite conservative within each lineage of PRRSV; mutations in the motif of HP-PRRSV and currently epidemic lineage 1 (L1) PRRSV showed higher synthesis ability of viral negative genomic RNA, suggesting that those mutations were beneficial for viral replication. RNA structure analysis revealed that this motif maybe involved into a pseudoknot in the 3′-UTR. The results discovered a novel motif, 117–120th nucleotide in the 3′-UTR, that is critical for replication of PRRSV-2, and mutations in the motif contribute to the enhanced replicative ability of HP-PRRSV or L1 PRRSV. Our findings will help to understand the molecular basis of PRRSV replication and find the potential factors resulting in an epidemic strain of PRRSV.
Collapse
Affiliation(s)
- Junyao Xiong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Xingyang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Kuan Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Xinyi Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Dongyan Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Fang Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Yongbo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
- Correspondence: ; Tel.: +86-451-5105-1765; Fax: +86-451-5199-7166
| |
Collapse
|
4
|
Wang L, Zhang Y. Novel porcine reproductive and respiratory syndrome virus strains in the United States with deletions in untranslated regions. Arch Virol 2015; 160:3093-3096. [PMID: 26358265 DOI: 10.1007/s00705-015-2602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/05/2015] [Indexed: 02/07/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) still causes major problems for the swine industry worldwide. Here, we report the detection and genomic characterization of two novel PRRS virus (PRRSV) strains from the United States with deletions in untranslated regions (UTRs). The OH155-2015 strain has two single-nucleotide deletions in the 5' UTR, whereas the OH28372-2013 strain has a 13-nt deletion in the 3' UTR. In addition, OH155-2015 and OH28372-2013 have a unique deletion and mutations in the NSP2 and N gene, respectively. Our study highlights the importance of continued monitoring of PRRSV using whole-genome sequencing.
Collapse
Affiliation(s)
- Leyi Wang
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, 8995 East Main Street, Building #6, Reynoldsburg, OH, 43068, USA.
| | - Yan Zhang
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, 8995 East Main Street, Building #6, Reynoldsburg, OH, 43068, USA.
| |
Collapse
|
5
|
Zhu L, Bao L, Zhang X, Xia X, Sun H. Inhibition of porcine reproductive and respiratory syndrome virus replication with exosome-transferred artificial microRNA targeting the 3' untranslated region. J Virol Methods 2015; 223:61-8. [PMID: 26238924 DOI: 10.1016/j.jviromet.2015.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/05/2015] [Accepted: 07/29/2015] [Indexed: 12/30/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important swine disease. As part of the development of RNA interference (RNAi) strategy against the disease, in this study a recombinant adenovirus (rAd) expressing the artificial microRNA (amiRNA) targeting the 3' untranslated region (UTR) was used to investigate the exosome-mediated amiRNA transfer from different pig cell types to porcine alveolar macrophages (PAMs). Quantitative RT-PCR showed that the sequence-specific amiRNA was expressed in and secreted via exosomes from the rAd-transduced pig kidney cell line PK-15, PAM cell line 3D4/163, kidney fibroblast cells (PFCs) and endometrial endothelial cells (PEECs) with different secretion efficiencies. Fluorescent microscopy revealed that the dye-labeled amiRNA-containing exosomes of different cell origins were efficiently taken up by all of the five types of pig cells tested, including primary PAMs. Quantitative RT-PCR showed that the amiRNA-containing exosomes of different cell origins were taken up by primary PAMs in both time- and dose-dependent manners. Both quantitative RT-PCR and viral titration assays showed that the exosome-delivered amiRNA had potent anti-viral effects against three different PRRSV strains. These data suggest that the exosomes derived from pig cells could serve as an efficient miRNA transfer vehicle, and that the exosome-delivered amiRNA had potent anti-viral effects against different PRRSV strains.
Collapse
Affiliation(s)
- Li Zhu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Liping Bao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Zhang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoli Xia
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Huaichang Sun
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Kappes MA, Faaberg KS. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015; 479-480:475-86. [PMID: 25759097 PMCID: PMC7111637 DOI: 10.1016/j.virol.2015.02.012] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
Abstract
Porcine reproductive and respiratory disease virus (PRRSV) has the intrinsic ability to adapt and evolve. After 25 years of study, this persistent pathogen has continued to frustrate efforts to eliminate infection of herds through vaccination or other elimination strategies. The purpose of this review is to summarize the research on the virion structure, replication and recombination properties of PRRSV that have led to the extraordinary phenotype and genotype diversity that exists worldwide. Review of structure, replication and recombination of porcine reproductive and respiratory syndrome virus. Homologous recombination to produce conventional subgenomic messenger RNA as well as heteroclite RNA. Discussion of structure, replication and recombination mechanisms that have yielded genotypic and phenotypic diversity.
Collapse
Affiliation(s)
- Matthew A Kappes
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA.
| |
Collapse
|
7
|
Yu Y, Wang G, Li Q, Du Y, Du T, Mu Y, Xiao S, Zhao Q, Wang C, Sun Y, Xu X, Zhang G, Hsu WH, Cai X, Zhou EM. Single-chain anti-idiotypic antibody retains its specificity to porcine reproductive and respiratory syndrome virus GP5. Immunol Lett 2015; 163:8-13. [DOI: 10.1016/j.imlet.2014.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/30/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
|