1
|
Sion E, Ab-Rahim S, Muhamad M. Trends on Human Norovirus Virus-like Particles (HuNoV-VLPs) and Strategies for the Construction of Infectious Viral Clones toward In Vitro Replication. Life (Basel) 2023; 13:1447. [PMID: 37511822 PMCID: PMC10381778 DOI: 10.3390/life13071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/30/2023] Open
Abstract
Most acute gastroenteritis (AGE) outbreaks and sporadic cases in developing countries are attributable to infection by human norovirus (HuNoV), the enteric virus mainly transmitted via fecal-contaminated water. However, it has been challenging to study HuNoV due to the lack of suitable systems to cultivate and replicate the virus, hindering the development of treatments and vaccines. Researchers have been using virus-like particles (VLPs) and infectious viral clones to overcome this challenge as alternatives to fresh virus isolates in various in vitro and ex vivo models. VLPs are multiprotein structures that mimic the wild-type virus but cannot replicate in host cells due to the lack of genetic materials for replication, limiting downstream analysis of the virus life cycle and pathogenesis. The development of in vitro cloning systems has shown promise for HuNoV replication studies. This review discusses the approaches for constructing HuNoV-VLPs and infectious viral clones, the techniques involved, and the challenges faced. It also highlights the relationship between viral genes and their protein products and provides a perspective on technical considerations for producing efficient HuNoV-VLPs and infectious viral clones, which could substitute for native human noroviruses in future studies.
Collapse
Affiliation(s)
- Emilly Sion
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Selangor Branch, Sungai Buloh Campus, Sungai Buloh 47000, Selangor, Malaysia
| | - Sharaniza Ab-Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Selangor Branch, Sungai Buloh Campus, Sungai Buloh 47000, Selangor, Malaysia
| | - Mudiana Muhamad
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Selangor Branch, Sungai Buloh Campus, Sungai Buloh 47000, Selangor, Malaysia
| |
Collapse
|
3
|
Zhao EM, Mao AS, de Puig H, Zhang K, Tippens ND, Tan X, Ran FA, Han I, Nguyen PQ, Chory EJ, Hua TY, Ramesh P, Thompson DB, Oh CY, Zigon ES, English MA, Collins JJ. RNA-responsive elements for eukaryotic translational control. Nat Biotechnol 2022; 40:539-545. [PMID: 34711989 DOI: 10.1038/s41587-021-01068-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
The ability to control translation of endogenous or exogenous RNAs in eukaryotic cells would facilitate a variety of biotechnological applications. Current strategies are limited by low fold changes in transgene output and the size of trigger RNAs (trRNAs). Here we introduce eukaryotic toehold switches (eToeholds) as modular riboregulators. eToeholds contain internal ribosome entry site sequences and form inhibitory loops in the absence of a specific trRNA. When the trRNA is present, eToeholds anneal to it, disrupting the inhibitory loops and allowing translation. Through optimization of RNA annealing, we achieved up to 16-fold induction of transgene expression in mammalian cells. We demonstrate that eToeholds can discriminate among viral infection status, presence or absence of gene expression and cell types based on the presence of exogenous or endogenous RNA transcripts.
Collapse
Affiliation(s)
- Evan M Zhao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Angelo S Mao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helena de Puig
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kehan Zhang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathaniel D Tippens
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Tan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - F Ann Ran
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Isaac Han
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Peter Q Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Emma J Chory
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tiffany Y Hua
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Pradeep Ramesh
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David B Thompson
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Crystal Yuri Oh
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Eric S Zigon
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Max A English
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Schelker M, Mair CM, Jolmes F, Welke RW, Klipp E, Herrmann A, Flöttmann M, Sieben C. Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency. PLoS Comput Biol 2016; 12:e1005075. [PMID: 27780209 PMCID: PMC5079570 DOI: 10.1371/journal.pcbi.1005075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/24/2016] [Indexed: 12/21/2022] Open
Abstract
After endocytic uptake, influenza viruses transit early endosomal compartments and eventually reach late endosomes. There, the viral glycoprotein hemagglutinin (HA) triggers fusion between endosomal and viral membrane, a critical step that leads to release of the viral segmented genome destined to reach the cell nucleus. Endosomal maturation is a complex process involving acidification of the endosomal lumen as well as endosome motility along microtubules. While the pH drop is clearly critical for the conformational change and membrane fusion activity of HA, the effect of intracellular transport dynamics on the progress of infection remains largely unclear. In this study, we developed a comprehensive mathematical model accounting for the first steps of influenza virus infection. We calibrated our model with experimental data and challenged its predictions using recombinant viruses with altered pH sensitivity of HA. We identified the time point of virus-endosome fusion and thereby the diffusion distance of the released viral genome to the nucleus as a critical bottleneck for efficient virus infection. Further, we concluded and supported experimentally that the viral RNA is subjected to cytosolic degradation strongly limiting the probability of a successful genome import into the nucleus. Influenza A virus carries its segmented genome inside a lipid envelope. Since genome replication occurs inside the nucleus, the main goal of virus infection is to deliver all genome segments through the cytoplasm into the nucleus. After endocytic uptake, influenza viruses transit early endosomal compartments and eventually reach late endosomes. Within a complex maturation process, the endosomal lumen acidifies while the vesicles are transported trough the cytosol. If and how these early processes affect virus infection remained mostly speculative. To reach a better understanding and to quantify the physical interplay between membrane fusion, genome diffusion and infection, we developed a mathematical model that comprises all initial steps of virus infection until genome delivery. We calibrated our model using experimental data and challenged its predictions using recombinant viruses to introduce perturbations. Our results provide a theoretical framework to understand the importance of the endosomal virus passage before membrane fusion and genome release. We further unraveled RNA degradation as a previously unknown limiting factor for virus infection. Our work will help to make predictions and evaluate newly occurring virus strains, regarding their infection efficiency in a given host cell, by simply considering their pH sensitivity.
Collapse
Affiliation(s)
- Max Schelker
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Fabian Jolmes
- Molecular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Herrmann
- Molecular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
- IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Max Flöttmann
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (MF); (CS)
| | - Christian Sieben
- Molecular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (MF); (CS)
| |
Collapse
|
5
|
Yao S, Hart DJ, An Y. Recent advances in universal TA cloning methods for use in function studies. Protein Eng Des Sel 2016; 29:551-556. [PMID: 27578885 DOI: 10.1093/protein/gzw047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/28/2016] [Accepted: 08/05/2016] [Indexed: 01/08/2023] Open
Abstract
As one of the simplest and most efficient cloning methods, T-vector-based TA cloning has been widely used for cloning of single genes and construction of DNA libraries. This approach is especially suitable for high-throughput cloning of diverse DNA fragments since inserts can be cloned without knowledge of their sequence; it is therefore an ideal tool for high-throughput analysis of protein structure and function. Although most of the currently available T-vectors can only be used for cloning purposes, some novel variants with improved functions have be developed. This review focuses on recent developments of universal TA cloning methods and T-vectors constructed for function studies.
Collapse
Affiliation(s)
- Shuo Yao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble38044, France
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Kanda T, Ozawa M, Tsukiyama-Kohara K. IRES-mediated translation of foot-and-mouth disease virus (FMDV) in cultured cells derived from FMDV-susceptible and -insusceptible animals. BMC Vet Res 2016; 12:66. [PMID: 27036295 PMCID: PMC4815274 DOI: 10.1186/s12917-016-0694-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/23/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Foot-and-mouth disease virus (FMDV) possess a positive sense, single stranded RNA genome. Internal ribosomal entry site (IRES) element exists within its 5' untranslated region (5'UTR) of the viral RNA. Translation of the viral RNA is initiated by internal entry of the 40S ribosome within the IRES element. This process is facilitated by cellular factors known as IRES trans-acting factors (ITAFs). Foot-and-mouth disease (FMD) is host-restricted disease for cloven-hoofed animals such as cattle and pigs, but the factors determining the host range have not been identified yet. Although, ITAFs are known to promote IRES-mediated translation, these findings were confirmed only in cells derived from FMDV-insusceptible animals so far. We evaluated and compared the IRES-mediated translation activities among cell lines derived from four different animal species using bicistronic luciferase reporter plasmid, which possesses an FMDV-IRES element between Renilla and Firefly luciferase genes. Furthermore, we analyzed the effect of the cellular factors on IRES-mediated translation by silencing the cellular factors using siRNA in both FMDV-susceptible and -insusceptible animal cells. RESULTS Our data indicated that IRES-mediated translational activity was not linked to FMDV host range. ITAF45 promoted IRES-mediated translation in all cell lines, and the effects of poly-pyrimidine tract binding protein (PTB) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) were observed only in FMDV-susceptible cells. Thus, PTB and 4E-BP1 may influence the host range of FMDV. CONCLUSIONS IRES-mediated translation activity of FMDV was not predictive of its host range. ITAF45 promoted IRES-mediated translation in all cells, and the effects of PTB and 4E-BP1 were observed only in FMDV-susceptible cells.
Collapse
Affiliation(s)
- Takehiro Kanda
- Department of Animal Hygiene, Joint Facility of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Makoto Ozawa
- Department of Animal Hygiene, Joint Facility of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan.,Transboundary Animal Disease Center, Joint Facility of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kyoko Tsukiyama-Kohara
- Department of Animal Hygiene, Joint Facility of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan. .,Transboundary Animal Disease Center, Joint Facility of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan.
| |
Collapse
|
7
|
A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion. J Virol 2014; 88:13189-200. [PMID: 25187542 DOI: 10.1128/jvi.01704-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The conformational change of the influenza virus hemagglutinin (HA) protein mediating the fusion between the virus envelope and the endosomal membrane was hypothesized to be induced by protonation of specific histidine residues since their pKas match the pHs of late endosomes (pK(a) of ∼ 6.0). However, such critical key histidine residues remain to be identified. We investigated the highly conserved His184 at the HA1-HA1 interface and His110 at the HA1-HA2 interface of highly pathogenic H5N1 HA as potential pH sensors. By replacing both histidines with different amino acids and analyzing the effect of these mutations on conformational change and fusion, we found that His184, but not His110, plays an essential role in the pH dependence of the conformational change of HA. Computational modeling of the protonated His184 revealed that His184 is central in a conserved interaction network possibly regulating the pH dependence of conformational change via its pKa. As the propensity of histidine to get protonated largely depends on its local environment, mutation of residues in the vicinity of histidine may affect its pK(a). The HA of highly pathogenic H5N1 viruses carries a Glu-to-Arg mutation at position 216 close to His184. By mutation of residue 216 in the highly pathogenic as well as the low pathogenic H5 HA, we observed a significant influence on the pH dependence of conformational change and fusion. These results are in support of a pK(a)-modulating effect of neighboring residues. IMPORTANCE The main pathogenic determinant of influenza viruses, the hemagglutinin (HA) protein, triggers a key step of the infection process: the fusion of the virus envelope with the endosomal membrane releasing the viral genome. Whereas essential aspects of the fusion-inducing mechanism of HA at low pH are well understood, the molecular trigger of the pH-dependent conformational change inducing fusion has been unclear. We provide evidence that His184 regulates the pH dependence of the HA conformational change via its pK(a). Mutations of neighboring residues which may affect the pK(a) of His184 could play an important role in virus adaptation to a specific host. We suggest that mutation of neighboring residue 216, which is present in all highly pathogenic phenotypes of H5N1 influenza virus strains, contributed to the adaptation of these viruses to the human host via its effect on the pKa of His184.
Collapse
|
8
|
PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J Virol 2014; 88:8735-42. [PMID: 24899203 DOI: 10.1128/jvi.00422-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mutation D701N in the PB2 protein is known to play a prominent role in the adaptation of avian influenza A viruses to mammalian hosts. In contrast, little is known about the nearby mutations S714I and S714R, which have been observed in some avian influenza viruses highly pathogenic for mammals. We have generated recombinant H5N1 viruses with PB2 displaying the avian signature 701D or the mammalian signature 701N and serine, isoleucine, and arginine at position 714 and compared them for polymerase activity and virus growth in avian and mammalian cells, as well as for pathogenicity in mice. Mutation D701N led to an increase in polymerase activity and replication efficiency in mammalian cells and in mouse pathogenicity, and this increase was significantly enhanced when mutation D701N was combined with mutation S714R. Stimulation by mutation S714I was less distinct. These observations indicate that PB2 mutation S714R, in combination with the mammalian signature at position 701, has the potential to promote the adaptation of an H5N1 virus to a mammalian host. IMPORTANCE Influenza A/H5N1 viruses are avian pathogens that have pandemic potential, since they are spread over large parts of Asia, Africa, and Europe and are occasionally transmitted to humans. It is therefore of high scientific interest to understand the mechanisms that determine the host specificity and pathogenicity of these viruses. It is well known that the PB2 subunit of the viral polymerase is an important host range determinant and that PB2 mutation D701N plays an important role in virus adaptation to mammalian cells. In the present study, we show that mutation S714R is also involved in adaptation and that it cooperates with D701N in exposing a nuclear localization signal that mediates importin-α binding and entry of PB2 into the nucleus, where virus replication and transcription take place.
Collapse
|
9
|
Abstract
Reverse genetics is the creation of a virus from a full-length cDNA copy of the viral genome, referred to as an "infectious clone," and is one of the most powerful genetic tools in modern virology. Since its development in 1999, plasmid-based reverse genetics has been effectively applied to numerous aspects of influenza studies which include revolutionizing the production of seasonal and pandemic influenza vaccine seed strains. Although continual improvement in reverse genetics system is being made in different laboratories for the efficient rescue of the influenza virus, the basic concept of synthesizing viral RNA using RNA polymerase I remains the same. Coupled with in vitro mutagenesis, reverse genetics can be applied widely to accelerate progress in understanding the influenza virus life cycle, the generation of customized vaccine seed strains, development of live-attenuated vaccines, and the use of influenza virus as vaccine and gene delivery vectors.
Collapse
Affiliation(s)
- Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691-4096, USA,
| |
Collapse
|