1
|
Crespo-Bellido A, Hoyer JS, Burgos-Amengual Y, Duffy S. Phylogeographic analysis of Begomovirus coat and replication-associated proteins. J Gen Virol 2024; 105:002037. [PMID: 39446128 PMCID: PMC11500754 DOI: 10.1099/jgv.0.002037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Begomoviruses are globally distributed plant pathogens that significantly limit crop production. These viruses are traditionally described according to phylogeographic distribution and categorized into two groups: begomoviruses from the Africa, Asia, Europe and Oceania (AAEO) region and begomoviruses from the Americas. Monopartite begomoviruses are more common in the AAEO region, while bipartite viruses predominate in the Americas, where the begomoviruses lack the V2/AV2 gene involved in inter-cellular movement and RNA silencing suppression found in AAEO begomoviruses. While these features are generally accepted as lineage-defining, the number of known species has doubled due to sequence-based discovery since 2010. To re-evaluate the geographic groupings after the rapid expansion of the genus, we conducted phylogenetic analyses for begomovirus species representatives of the two longest and most conserved begomovirus proteins: the coat and replication-associated proteins. Both proteins still largely support the broad AAEO and Americas begomovirus groupings, except for sweet potato-infecting begomoviruses that form an independent, well-supported clade for their coat protein regardless of the region they were isolated from. Our analyses do not support more fine-scaled phylogeographic groupings. Monopartite and bipartite genome organizations are broadly interchanged throughout the phylogenies, and the absence of the V2/AV2 gene is highly reflective of the split between Americas and AAEO begomoviruses. We observe significant evidence of recombination within the Americas and within the AAEO region but rarely between the regions. We speculate that increased globalization of agricultural trade, the invasion of polyphagous whitefly vector biotypes and recombination will blur begomovirus phylogeographic delineations in the future.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Yeissette Burgos-Amengual
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
2
|
Adhab M, Alkuwaiti NA. Geminiviruses occurrence in the middle east and their impact on agriculture in Iraq. GEMINIVIRUS : DETECTION, DIAGNOSIS AND MANAGEMENT 2022:171-185. [DOI: 10.1016/b978-0-323-90587-9.00021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
3
|
Construction of Infectious Clones of Begomoviruses: Strategies, Techniques and Applications. BIOLOGY 2021; 10:biology10070604. [PMID: 34209952 PMCID: PMC8301103 DOI: 10.3390/biology10070604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Begomovirus has a wide host range and threatens a significant amount of economic damage to many important crops such as tomatoes, beans, cassava, squash and cotton. There are many efforts directed at controlling this disease including the use of insecticides to control the insect vector as well as screening the resistant varieties. The use of synthetic virus or infectious clones approaches has allowed plant virologists to characterize and exploit the genome virus at the molecular and biological levels. By exploiting the DNA of the virus using the infectious clones strategy, the viral genome can be manipulated at specific regions to study functional genes for host–virus interactions. Thus, this review will provide an overview of the strategy to construct infectious clones of Begomovirus. The significance of established infectious clones in Begomovirus study will also be discussed. Abstract Begomovirus has become a potential threat to the agriculture sector. It causes significant losses to several economically important crops. Given this considerable loss, the development of tools to study viral genomes and function is needed. Infectious clones approaches and applications have allowed the direct exploitation of virus genomes. Infectious clones of DNA viruses are the critical instrument for functional characterization of the notable and newly discovered virus. Understanding of structure and composition of viruses has contributed to the evolution of molecular plant pathology. Therefore, this review provides extensive guidelines on the strategy to construct infectious clones of Begomovirus. Also, this technique’s impacts and benefits in controlling and understanding the Begomovirus infection will be discussed.
Collapse
|
4
|
Rivarez MPS, Vučurović A, Mehle N, Ravnikar M, Kutnjak D. Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing. Front Microbiol 2021; 12:671925. [PMID: 34093492 PMCID: PMC8175903 DOI: 10.3389/fmicb.2021.671925] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses cause a big fraction of economically important diseases in major crops, including tomato. In the past decade (2011–2020), many emerging or re-emerging tomato-infecting viruses were reported worldwide. In this period, 45 novel viral species were identified in tomato, 14 of which were discovered using high-throughput sequencing (HTS). In this review, we first discuss the role of HTS in these discoveries and its general impact on tomato virome research. We observed that the rate of tomato virus discovery is accelerating in the past few years due to the use of HTS. However, the extent of the post-discovery characterization of viruses is lagging behind and is greater for economically devastating viruses, such as the recently emerged tomato brown rugose fruit virus. Moreover, many known viruses still cause significant economic damages to tomato production. The review of databases and literature revealed at least 312 virus, satellite virus, or viroid species (in 22 families and 39 genera) associated with tomato, which is likely the highest number recorded for any plant. Among those, here, we summarize the current knowledge on the biology, global distribution, and epidemiology of the most important species. Increasing knowledge on tomato virome and employment of HTS to also study viromes of surrounding wild plants and environmental samples are bringing new insights into the understanding of epidemiology and ecology of tomato-infecting viruses and can, in the future, facilitate virus disease forecasting and prevention of virus disease outbreaks in tomato.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,School for Viticulture and Enology, University of Nova Gorica, Nova Gorica, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
5
|
Frequent occurrence of Mungbean yellow mosaic India virus in tomato leaf curl disease affected tomato in Oman. Sci Rep 2019; 9:16634. [PMID: 31719590 PMCID: PMC6851148 DOI: 10.1038/s41598-019-53106-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Next generation sequencing (NGS) of DNAs amplified by rolling circle amplification from 6 tomato (Solanum lycopersicum) plants with leaf curl symptoms identified a number of monopartite begomoviruses, including Tomato yellow leaf curl virus (TYLCV), and a betasatellite (Tomato leaf curl betasatellite [ToLCB]). Both TYLCV and ToLCB have previously been identified infecting tomato in Oman. Surprisingly the NGS results also suggested the presence of the bipartite, legume-adapted begomovirus Mungbean yellow mosaic Indian virus (MYMIV). The presence of MYMIV was confirmed by cloning and Sanger sequencing from four of the six plants. A wider analysis by PCR showed MYMIV infection of tomato in Oman to be widespread. Inoculation of plants with full-length clones showed the host range of MYMIV not to extend to Nicotiana benthamiana or tomato. Inoculation to N. benthamiana showed TYLCV to be capable of maintaining MYMIV in both the presence and absence of the betasatellite. In tomato MYMIV was only maintained by TYLCV in the presence of the betasatellite and then only at low titre and efficiency. This is the first identification of TYLCV with ToLCB and the legume adapted bipartite begomovirus MYMIV co-infecting tomato. This finding has far reaching implications. TYLCV has spread around the World from its origins in the Mediterranean/Middle East, in some instances, in live tomato planting material. The results here may suggest that begomoviruses which do not commonly infect tomato, such as MYMIV, could be spread as a passenger of TYLCV in tomato.
Collapse
|
6
|
Sohrab SS. Genetic diversity of begomoviruses infecting tomato plant in Saudi Arabia. Saudi J Biol Sci 2019; 27:222-228. [PMID: 31889840 PMCID: PMC6933193 DOI: 10.1016/j.sjbs.2019.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 11/25/2022] Open
Abstract
Tomato is known as a highly valuable crop and grown worldwide for various uses. The cultivation and tomato production severely affected globally by several diseases caused by various pathogens. Begomoviruses causes yellow mosaic and leaf curl disease of tomato in the tropical, subtropical, temperate, and semi-arid regions. In Saudi Arabia, the tomato production adversely affected by disease caused by begomoviruses known as TYLCV and ToLCSDV. In this study, the pathogen was identified by Polymerase Chain Reaction using virus-specific primers and transmitted by whiteflies to healthy tomato seedlings. In a field survey, the tomato plants were exhibiting symptoms like viral infection. The infected leaf was randomly collected from various fields of tomato growing areas like Jeddah, Makkah, Tabuk, and Hail. The full-length viral genome was amplified by Rolling Circle Amplification technology (RCA) while betasatellites were amplified by PCR using universal betasatellites primers. The full-length viral genome (∼2.7 kb) and betasatellites (∼1.4 kb) were cloned and sequenced bi-directionally. The generated sequences were assembled and analyzed to find out the genetic variability by using bioinformatics tools and the genetic variability and phylogenetic relationships with selected begomoviruses were analyzed. The sequences showed the highest identity with an isolate of ToLCSDV and TYLCV. The nucleotide similarity and phylogenetic relationship showed the closest cluster with ToLCSDV and TYLCV. The data generated in this study elucidate that the causal organism is a variant of either TYLCV or ToLCSDV. The provided information from this study will be highly valuable for researchers and vegetable growers not only in Saudi Arabia but also in Arabian Peninsula.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No: 80216, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
7
|
Kushawaha AK, Dasgupta I. Infectivity of cloned begomoviral DNAs: an appraisal. Virusdisease 2018; 30:13-21. [PMID: 31143828 DOI: 10.1007/s13337-018-0453-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 04/18/2018] [Indexed: 11/28/2022] Open
Abstract
Infectivity of cloned begomoviral DNAs is an important criterion to establish the etiology of the disease it causes, to study viral gene functions and host-virus interactions. Three main methods have been employed to study infectivity; mechanical inoculation with cloned viral DNA using abrasives, Agrobacterium-mediated inoculation (agroinoculation) of cloned viral DNA and bombardment using microprojectiles coated with cloned viral DNA (biolistics). Each method has its own advantages and disadvantages and the adoption of one over the other for demonstrating infectivity depends on various factors. This review compares the various features associated with the above three methods.
Collapse
Affiliation(s)
- Akhilesh Kumar Kushawaha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
8
|
Sohrab SS, Daur I. Identification of a monopartite begomovirus associated with yellow vein mosaic of Mentha longifolia in Saudi Arabia. 3 Biotech 2018; 8:92. [PMID: 29430354 PMCID: PMC5796946 DOI: 10.1007/s13205-018-1120-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022] Open
Abstract
Mentha is a very important crop grown and used extensively for many purposes in the Kingdom of Saudi Arabia. Begomoviruses are whitefly-transmitted viruses causing serious disease in many important plants exhibiting variable symptoms with significant economic loss globally. During farmers' field survey, yellow vein mosaic disease was observed in Mentha longifolia plants growing near tomato fields in Saudi Arabia. The causative agent was identified in 11 out of 19 samples using begomovirus-specific primers and the association of begomovirus with yellow vein mosaic disease in M. longifolia was confirmed. The full-length viral genome and betasatellite were amplified, cloned, and sequenced bidirectionally. The full DNA-A genome was found to have 2785 nucleotides with 1365 bp-associated betasatellite molecule. An attempt was made to amplify DNA-B, but none of the samples produced any positive amplicon of expected size which indicated the presence of monopartite begomovirus. The sequence identity matrix and phylogenetic analysis, based on full genome showed the highest identity (99.6%) with Tomato yellow leaf curl virus (TYLCV) and in phylogenetic analysis it formed a closed cluster with Tomato leaf curl virus infecting tomato and Corchorus crop in Saudi Arabia. The sequence analysis results of betasatellites showed the highest identity (98.9%) with Tomato yellow leaf curl betasatellites infecting tomato and phylogenetic analysis using betasatellites formed a close cluster with Tomato yellow leaf curl betasatellites infecting tomato and Corchorus crops, which has already been reported to cause yellow vein mosaic and leaf curl disease in many cultivated and weed crops growing in Saudi Arabia. The identified begomovirus associated with yellow vein mosaic disease in mentha could be a mutated strain of TYLCV and tentatively designated as TYLCV-Mentha isolate. Based on published data and latest information, this is the first report of identification of Tomato yellow leaf curl virus associated with yellow vein mosaic disease of M. longifolia from Saudi Arabia.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center (KFMRC), King Abdulaziz University, Post Box No-80216, Jeddah, 21589 Saudi Arabia
| | - Ihsanullah Daur
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Sohrab SS. The role of corchorus in spreading of tomato yellow leaf curl virus on tomato in Jeddah, Saudi Arabia. Virusdisease 2016; 27:19-26. [PMID: 26925440 PMCID: PMC4758306 DOI: 10.1007/s13337-015-0292-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022] Open
Abstract
Corchorus (Corchorus capsularis L. and Corchorus olitorius L.) is one of the most important fiber crops grown in tropical and subtropical regions throughout the world. Field survey was conducted and naturally infected leaf samples were collected from corchorus and tomato plants in Jeddah, Saudi Arabia. The causal virus was transmitted by whiteflies to tomato plants and begomovirus infection was confirmed by Polymerase chain reaction. The complete viral genome and associated betasatellites were amplified, cloned and sequenced from both corchorus and tomato samples. The genetic variability and phylogenetic relationships were determined for both isolates (corchorus and tomato). The complete genome sequences showed highest (99.5 % nt) similarity with tomato yellow leaf curl virus (TYLCV) and formed closest cluster with TYLCV-Tomato reported from Jizan and Al-Qasim, Saudi Arabia and betasatellites sequences showed highest similarity (99.8 % nt) with Tomato yellow leaf curl betasatellites-Jeddah followed by Tomato yellow leaf curl Oman betasatellites and formed closed cluster with TYLCV-Tomato. On the basis of results obtained from whiteflies transmission, sequence similarity and phylogenetic relationships; it is concluded that the identified virus could be a variant of TYLCV circulating in the Kingdom. The significance of this study demonstrated that the corchorus is serving as reservoir and alternative host and playing an important role in spreading the begomovirus associated disease in the Kingdom of Saudi Arabia.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No-80216, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
10
|
Ammara UE, Mansoor S, Saeed M, Amin I, Briddon RW, Al-Sadi AM. RNA interference-based resistance in transgenic tomato plants against Tomato yellow leaf curl virus-Oman (TYLCV-OM) and its associated betasatellite. Virol J 2015; 12:38. [PMID: 25890080 PMCID: PMC4359554 DOI: 10.1186/s12985-015-0263-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 02/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus (family Geminiviridae) is responsible for heavy yield losses for tomato production around the globe. In Oman at least five distinct begomoviruses cause disease in tomato, including TYLCV. Unusually, TYLCV infections in Oman are sometimes associated with a betasatellite (Tomato leaf curl betasatellite [ToLCB]; a symptom modulating satellite). RNA interference (RNAi) can be used to develop resistance against begomoviruses at either the transcriptional or post-transcriptional levels. RESULTS A hairpin RNAi (hpRNAi) construct to express double-stranded RNA homologous to sequences of the intergenic region, coat protein gene, V2 gene and replication-associated gene of Tomato yellow leaf curl virus-Oman (TYLCV-OM) was produced. Initially, transient expression of the hpRNAi construct at the site of virus inoculation was shown to reduce the number of plants developing symptoms when inoculated with either TYLCV-OM or TYLCV-OM with ToLCB-OM to Nicotiana benthamiana or tomato. Solanum lycopersicum L. cv. Pusa Ruby was transformed with the hpRNAi construct and nine confirmed transgenic lines were obtained and challenged with TYLCV-OM and ToLCB-OM by Agrobacterium-mediated inoculation. For all but one line, for which all plants remained symptomless, inoculation with TYLCV-OM led to a proportion (≤25%) of tomato plants developing symptoms of infection. For inoculation with TYLCV-OM and ToLCB-OM all lines showed a proportion of plants (≤45%) symptomatic. However, for all infected transgenic plants the symptoms were milder and virus titre in plants was lower than in infected non-transgenic tomato plants. CONCLUSIONS These results show that RNAi can be used to develop resistance against geminiviruses in tomato. The resistance in this case is not immunity but does reduce the severity of infections and virus titer. Also, the betasatellite may compromise resistance, increasing the proportion of plants which ultimately show symptoms.
Collapse
Affiliation(s)
- Um e Ammara
- Department of Crop Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, P.O. Box-34, 123, Al-Khod, Oman.
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Muhammad Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, P.O. Box-34, 123, Al-Khod, Oman.
| |
Collapse
|
11
|
Identification of a disease complex involving a novel monopartite begomovirus with beta- and alphasatellites associated with okra leaf curl disease in Oman. Arch Virol 2013; 159:1199-205. [PMID: 24287711 DOI: 10.1007/s00705-013-1926-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
Okra leaf curl disease (OLCD) is an important viral disease of okra in tropical and subtropical areas. The disease is caused by begomovirus-satellite complexes. A begomovirus and associated betasatellite and alphasatellite were identified in symptomatic okra plants from Barka, in the Al-Batinah region of Oman. Analysis of the begomovirus sequences showed them to represent a new begomovirus most closely related to cotton leaf curl Gezira virus (CLCuGeV), a begomovirus of African origin. The sequences showed less than 85 % nucleotide sequence identity to CLCuGeV isolates. The name okra leaf curl Oman virus (OLCOMV) is proposed for the new virus. Further analysis revealed that the OLCOMV is a recombinant begomovirus that evolved by the recombination of CLCuGeV isolates with tomato yellow leaf curl virus-Oman (TYLCV-OM). An alpha- and a betasatellite were also identified from the same plant sample, which were also unique when compared to sequences available in the databases. However, although the betasatellite appeared to be of African origin, the alphasatellite was most closely related to alphasatellites originating from South Asia. This is the first report of a begomovirus-satellite complex infecting okra in Oman.
Collapse
|