1
|
Regulatory Mechanisms, Protein Expression and Biological Activity of Photolyase Gene from Spodoptera littoralis Granulovirus Genome. Mol Biotechnol 2023; 65:433-440. [PMID: 35980593 PMCID: PMC9935652 DOI: 10.1007/s12033-022-00537-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
One of the most important factor that affects the efficient using of baculoviruses as a biopesticide is their sensitivity to UV irradiation. In this study, a photolyase gene (phr) of 1.4 kbp DNA fragment was cloned and characterized from Spodoptera littoralis granulovirus, an Egyptian isolate (SpliGV-EG1). A sequence of 466 amino acid were deduced when the gene was completely sequenced with a predicted molecular mass of ~ 55 kDa. Transcriptional regulation analyses revealed that phr transcripts were detected early at 6-h post-infection (hpi) and remained detectable until 72 hpi, suggesting their transcriptional regulation from a putative early promoter motif. An approximately ~ 55 kDa protein fragment was expressed from phr-induced bacterial culture and detected by SDS-PAGE and western blotting. In addition, direct exposure to UV irradiation resulted in a twofold decrease in SpliGV-EG1 occlusion bodies activation compared with Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) occlusion bodies which decreased with about 129-fold after exposure to UV irradiation based on median lethal concentration value (LC50). The obtained results suggested that the presence of photolyase gene possibly alters the inactivation of SpliGV-EG1-occluded bodies by UV irradiation. These results support the role and application of the photolyase protein to improve the damaged DNA repair mechanism as well as resistance of SpliGV to UV light inactivation.
Collapse
|
2
|
Gencer D, Bayramoglu Z, Nalcacioglu R, Demirbag Z, Demir I. Genome sequence analysis and organization of the Hyphantria cunea granulovirus (HycuGV-Hc1) from Turkey. Genomics 2019; 112:459-466. [PMID: 30898611 DOI: 10.1016/j.ygeno.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/14/2023]
Abstract
The fall webworm (Hyphantria cunea) impacts a wide variety of crops and cultivated broadleaf plant species. The pest is native to North America, was introduced to Europe and has since spread further as far as central Asia. Despite several attempts to control its distribution, the pest continues to spread causing damage all over the world. A naturally occurring baculovirus, Hyphantria cunea granulovirus (HycuGV-Hc1), isolated from the larvae of H. cunea in Turkey appears to have a potential as microbial control agent against this pest. In this report we describe the complete genome sequence and organization of the granulovirus isolate (HycuGV-Hc1) that infects the larval stages and compare it to other baculovirus genomes. The HycuGV-Hc1 genome is a circular double-stranded DNA of 114,825 bp in size with a nucleotide distribution of 39.3% G + C. Bioinformatics analysis predicted 132 putative open reading frames of (ORFs) ≥ 150 nucleotides. There are 24 ORFs with unknown function. Seven homologous repeated regions (hrs) and two bro genes (bro-1 and bro-2) were identified in the genome. Comparison to other baculovirus genomes, HycuGV-Hc1 revealed some differences in gene content and organization. Gene parity plots and phylogenetics confirmed that HycuGV-Hc1 is a Betabaculovirus and is closely related to Plutella xylostella granulovirus. This study expands our knowledge on the genetic variation of HycuGV isolates and provides further novel knowledge on the nature of granuloviruses.
Collapse
Affiliation(s)
- Donus Gencer
- Karadeniz Technical University, Faculty of Science, Department of Biology, 61080 Trabzon, Turkey
| | - Zeynep Bayramoglu
- Karadeniz Technical University, Faculty of Science, Department of Biology, 61080 Trabzon, Turkey
| | - Remziye Nalcacioglu
- Karadeniz Technical University, Faculty of Science, Department of Biology, 61080 Trabzon, Turkey
| | - Zihni Demirbag
- Karadeniz Technical University, Faculty of Science, Department of Biology, 61080 Trabzon, Turkey
| | - Ismail Demir
- Karadeniz Technical University, Faculty of Science, Department of Biology, 61080 Trabzon, Turkey.
| |
Collapse
|
3
|
Gueli Alletti G, Carstens EB, Weihrauch B, Jehle JA. Agrotis segetum nucleopolyhedrovirus but not Agrotis segetum granulovirus replicate in AiE1611T cell line of Agrotisipsilon. J Invertebr Pathol 2018; 151:7-13. [DOI: 10.1016/j.jip.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
|
4
|
Gueli Alletti G, Eigenbrod M, Carstens EB, Kleespies RG, Jehle JA. The genome sequence of Agrotis segetum granulovirus, isolate AgseGV-DA, reveals a new Betabaculovirus species of a slow killing granulovirus. J Invertebr Pathol 2017; 146:58-68. [DOI: 10.1016/j.jip.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022]
|
5
|
Zhang S, Zhu Z, Sun S, Chen Q, Deng F, Yang K. Genome sequencing and analysis of a granulovirus isolated from the Asiatic rice leafroller, Cnaphalocrocis medinalis. Virol Sin 2015; 30:417-24. [PMID: 26712716 DOI: 10.1007/s12250-015-3658-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
The complete genome of Cnaphalocrocis medinalis granulovirus (CnmeGV) from a serious migratory rice pest, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), was sequenced using the Roche 454 Genome Sequencer FLX system (GS FLX) with shotgun strategy and assembled by Roche GS De Novo assembler software. Its circular double-stranded genome is 111,246 bp in size with a high A+T content of 64.8% and codes for 118 putative open reading frames (ORFs). It contains 37 conserved baculovirus core ORFs, 13 unique ORFs, 26 ORFs that were found in all Lepidoptera baculoviruses and 42 common ORFs. The analysis of nucleotide sequence repeats revealed that the CnmeGV genome differs from the rest of sequenced GVs by a 23 kb and a 17kb gene block inversions, and does not contain any typical homologous region (hr) except for a region of non-hr-like sequence. Chitinase and cathepsin genes, which are reported to have major roles in the liquefaction of the hosts, were not found in the CnmeGV genome, which explains why CnmeGV infected insects do not show the phenotype of typical liquefaction. Phylogenetic analysis, based on the 37 core baculovirus genes, indicates that CnmeGV is closely related to Adoxophyes orana granulovirus. The genome analysis would contribute to the functional research of CnmeGV, and would benefit to the utilization of CnmeGV as pest control reagent for rice production.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zheng Zhu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shifeng Sun
- Guangdong Haina Agriculture Co., Ltd, Huizhou, 516005, China
| | - Qijin Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fei Deng
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
6
|
Mortality of cutworm larvae is not enhanced by Agrotis segetum granulovirus and Agrotis segetum nucleopolyhedrovirus B coinfection relative to single infection by either virus. Appl Environ Microbiol 2015; 81:2893-9. [PMID: 25681187 DOI: 10.1128/aem.03726-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mixed infections of insect larvae with different baculoviruses are occasionally found. They are of interest from an evolutionary as well as from a practical point of view when baculoviruses are applied as biocontrol agents. Here, we report mixed-infection studies of neonate larvae of the common cutworm, Agrotis segetum, with two baculoviruses, Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) and Agrotis segetum granulovirus (AgseGV). By applying quantitative PCR (qPCR) analysis, coinfections of individual larvae were demonstrated, and occlusion body (OB) production within singly infected and coinfected larvae was determined in individual larvae. Mixtures of viruses did not lead to changes in mortality rates compared with rates of single-virus treatments, indicating an independent action within host larvae under our experimental conditions. AgseNPV-B-infected larvae showed an increase in OB production during 2 weeks of infection, whereas the number of AgseGV OBs did not change from the first week to the second week. Fewer OBs of both viruses were produced in coinfections than in singly infected larvae, suggesting a competition of the two viruses for larval resources. Hence, no functional or economic advantage could be inferred from larval mortality and OB production from mixed infections of A. segetum larvae with AgseNPV-B and AgseGV.
Collapse
|
7
|
Cuartas PE, Barrera GP, Belaich MN, Barreto E, Ghiringhelli PD, Villamizar LF. The complete sequence of the first Spodoptera frugiperda Betabaculovirus genome: a natural multiple recombinant virus. Viruses 2015; 7:394-421. [PMID: 25609309 PMCID: PMC4306845 DOI: 10.3390/v7010394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/26/2014] [Indexed: 01/08/2023] Open
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a major pest in maize crops in Colombia, and affects several regions in America. A granulovirus isolated from S. frugiperda (SfGV VG008) has potential as an enhancer of insecticidal activity of previously described nucleopolyhedrovirus from the same insect species (SfMNPV). The SfGV VG008 genome was sequenced and analyzed showing circular double stranded DNA of 140,913 bp encoding 146 putative ORFs that include 37 Baculoviridae core genes, 88 shared with betabaculoviruses, two shared only with betabaculoviruses from Noctuide insects, two shared with alphabaculoviruses, three copies of own genes (paralogs) and the other 14 corresponding to unique genes without representation in the other baculovirus species. Particularly, the genome encodes for important virulence factors such as 4 chitinases and 2 enhancins. The sequence analysis revealed the existence of eight homologous regions (hrs) and also suggests processes of gene acquisition by horizontal transfer including the SfGV VG008 ORFs 046/047 (paralogs), 059, 089 and 099. The bioinformatics evidence indicates that the genome donors of mentioned genes could be alpha- and/or betabaculovirus species. The previous reported ability of SfGV VG008 to naturally co-infect the same host with other virus show a possible mechanism to capture genes and thus improve its fitness.
Collapse
Affiliation(s)
- Paola E Cuartas
- Centro de investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria CORPOICA, Km 14 Vía Mosquera 250047, Cundinamarca, Colombia.
| | - Gloria P Barrera
- Centro de investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria CORPOICA, Km 14 Vía Mosquera 250047, Cundinamarca, Colombia.
| | - Mariano N Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Dto. de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, Provincia de Buenos Aires, 1876, Argentina.
| | - Emiliano Barreto
- Centro de Bioinformática, Instituto de Biotecnología, Universidad Nacional de Colombia. Avenida Carrera 30 # 45, Bogotá 11001000, Cundinamarca, Colombia.
| | - Pablo D Ghiringhelli
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Dto. de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, Provincia de Buenos Aires, 1876, Argentina.
| | - Laura F Villamizar
- Centro de investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria CORPOICA, Km 14 Vía Mosquera 250047, Cundinamarca, Colombia.
| |
Collapse
|
8
|
Wennmann JT, Gueli Alletti G, Jehle JA. The genome sequence of Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) reveals a new baculovirus species within the Agrotis baculovirus complex. Virus Genes 2014; 50:260-76. [PMID: 25471493 DOI: 10.1007/s11262-014-1148-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
The genome of Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) was completely sequenced and compared with whole genome sequences of the Agrotis segetum nucleopolyhedrovirus A (AgseNPV-A) and Agrotis ipsilon nucleopolyhedrovirus (AgipNPV). The AgseNPV-B genome is 148,981 bp in length and encodes 150 putative open reading frames. AgseNPV-B contains two copies of the gene viral enhancing factor (vef), making the Agrotis nucleopolyhedroviruses and A. segetum granulovirus (AgseGV) very rich in vef in comparison to other baculoviruses. Genome alignments of AgseNPV-B, AgseNPV-A and AgipNPV showed a very high genome co-linearity interspersed with variable regions, which are considered as putative sites of genomic recombination. Phylogenetic analyses revealed that all three viruses are distinct. However, AgseNPV-B is more closely related to AgipNPV suggesting that both viruses are at an early stage of phylogenetic divergence. It is proposed that AgseNPV-B belongs to a third Alphabaculovirus species of the Agrotis baculovirus complex. The Agrotis exclamationis nucleopolyhedrovirus (AgexNPV) shared high nucleotide sequence identities with AgseNPV-B, suggesting it is actually an AgseNPV-B isolate.
Collapse
Affiliation(s)
- Jörg T Wennmann
- Institute for Biological Control, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Heinrichstr. 243, 64287, Darmstadt, Germany
| | | | | |
Collapse
|
9
|
Ardisson-Araújo DMP, de Melo FL, Andrade MDS, Sihler W, Báo SN, Ribeiro BM, de Souza ML. Genome sequence of Erinnyis ello granulovirus (ErelGV), a natural cassava hornworm pesticide and the first sequenced sphingid-infecting betabaculovirus. BMC Genomics 2014; 15:856. [PMID: 25280947 PMCID: PMC4192325 DOI: 10.1186/1471-2164-15-856] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 09/25/2014] [Indexed: 12/03/2022] Open
Abstract
Background Cassava (Manihot esculenta) is the basic source for dietary energy of 500 million people in the world. In Brazil, Erinnyis ello ello (Lepidoptera: Sphingidae) is a major pest of cassava crops and a bottleneck for its production. In the 1980s, a naturally occurring baculovirus was isolated from E. ello larva and successfully applied as a bio-pesticide in the field. Here, we described the structure, the complete genome sequence, and the phylogenetic relationships of the first sphingid-infecting betabaculovirus. Results The baculovirus isolated from the cassava hornworm cadavers is a betabaculovirus designated Erinnyis ello granulovirus (ErelGV). The 102,759 bp long genome has a G + C content of 38.7%. We found 130 putative ORFs coding for polypeptides of at least 50 amino acid residues. Only eight genes were found to be unique. ErelGV is closely related to ChocGV and PiraGV isolates. We did not find typical homologous regions and cathepsin and chitinase homologous genes are lacked. The presence of he65 and p43 homologous genes suggests horizontal gene transfer from Alphabaculovirus. Moreover, we found a nucleotide metabolism-related gene and two genes that could be acquired probably from Densovirus. Conclusions The ErelGV represents a new virus species from the genus Betabaculovirus and is the closest relative of ChocGV. It contains a dUTPase-like, a he65-like, p43-like genes, which are also found in several other alpha- and betabaculovirus genomes, and two Densovirus-related genes. Importantly, recombination events between insect viruses from unrelated families and genera might drive baculovirus genomic evolution. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-856) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Bergmann Morais Ribeiro
- Cell Biology Department, Laboratory of Baculovirus, University of Brasília, 70910-900 Brasília, DF, Brazil.
| | | |
Collapse
|