1
|
Harman-McKenna VK, De Buck J. Effective Isolation and Characterization of Mycobacteriophages with the Ability to Lyse Mycobacterium avium subsp. paratuberculosis. Viruses 2023; 16:20. [PMID: 38257721 PMCID: PMC10819923 DOI: 10.3390/v16010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Johne's disease (JD), a chronic infectious enteritis of ruminants, causes major economic losses in the dairy industry globally. This enteritis is caused by Mycobacterium avium subsp. Paratuberculosis (MAP). Currently there is no cure for JD and test-based culling has proved ineffective at preventing the spread. To isolate new mycobacteriophages (mbps) that can potentially be used to control JD transmission and infection on dairy farms, we optimized an isolation protocol by fecal spiking and the testing of different isolation solution compositions. Using this protocol, we successfully enhanced the yield of mbps from spiked fecal samples, elevating it from less than 1% to 59%. With this method, we isolated 14 mbps from 475 environmental samples collected from MAP-positive dairy farms, after in-sample enrichment with MAP and the fast-growing M. smegmatis. The sample sources included soil, manure pits, lactation barns, feces, milk, and drain water. After fingerprinting these mbps by restriction enzyme profiling, we concluded that 12 were distinct and novel. Further characterization of their host range revealed that eight were capable of lysing multiple MAP strains. We also studied the cross-resistance, lysogeny, the effect of pH and their antimycobacterial properties in milk replacer. Each novel mbp showed limited cross-resistance and prophage immunity and showed no reduction in the titer in a range of pHs after 4 h. The novel phages were also able to reduce the mycobacterial counts to zero after 8 h in milk replacer. In conclusion, these novel mbps could be considered to be used in the control strategies of JD on farms.
Collapse
Affiliation(s)
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Niblock DJ, Winkler AR, Curtin CE, Kokinda JF, Danker WA, Llorente Fernandez I, Smith AR, Ali A, Cruz GG, Givvines LC, Lee-Soety JY. Isolating and characterizing cluster AB Mycobacteriophage NoShow, which encodes lysis proteins shared with cluster H2 phages. Microbiol Resour Announc 2023; 12:e0064923. [PMID: 37747255 PMCID: PMC10586156 DOI: 10.1128/mra.00649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023] Open
Abstract
We present here Mycobacteriophage NoShow, isolated from a soil sample collected on the Maguire Campus of Saint Joseph's University in Merion Station, Pennsylvania. Even though NoShow's 52,825 bp genome is most similar to phages in cluster AB, its lysA and lysB genes are most similar to phages in cluster H2.
Collapse
Affiliation(s)
- Danielle J. Niblock
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Anne R. Winkler
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Caroline E. Curtin
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Jacqui F. Kokinda
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Walter A. Danker
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | | | - Ava R. Smith
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Asad Ali
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Gabrielle G. Cruz
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Leya C. Givvines
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Julia Y. Lee-Soety
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Hosseiniporgham S, Sechi LA. A Review on Mycobacteriophages: From Classification to Applications. Pathogens 2022; 11:777. [PMID: 35890022 PMCID: PMC9317374 DOI: 10.3390/pathogens11070777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterial infections are a group of life-threatening conditions triggered by fast- or slow-growing mycobacteria. Some mycobacteria, such as Mycobacterium tuberculosis, promote the deaths of millions of lives throughout the world annually. The control of mycobacterial infections is influenced by the challenges faced in the diagnosis of these bacteria and the capability of these pathogens to develop resistance against common antibiotics. Detection of mycobacterial infections is always demanding due to the intracellular nature of these pathogens that, along with the lipid-enriched structure of the cell wall, complicates the access to the internal contents of mycobacterial cells. Moreover, recent studies depicted that more than 20% of M. tuberculosis (Mtb) infections are multi-drug resistant (MDR), and only 50% of positive MDR-Mtb cases are responsive to standard treatments. Similarly, the susceptibility of nontuberculosis mycobacteria (NTM) to first-line tuberculosis antibiotics has also declined in recent years. Exploiting mycobacteriophages as viruses that infect mycobacteria has significantly accelerated the diagnosis and treatment of mycobacterial infections. This is because mycobacteriophages, regardless of their cycle type (temperate/lytic), can tackle barriers in the mycobacterial cell wall and make the infected bacteria replicate phage DNA along with their DNA. Although the infectivity of the majority of discovered mycobacteriophages has been evaluated in non-pathogenic M. smegmatis, more research is still ongoing to find mycobacteriophages specific to pathogenic mycobacteria, such as phage DS6A, which has been shown to be able to infect members of the M. tuberculosis complex. Accordingly, this review aimed to introduce some potential mycobacteriophages in the research, specifically those that are infective to the three troublesome mycobacteria, M. tuberculosis, M. avium subsp. paratuberculosis (MAP), and M. abscessus, highlighting their theranostic applications in medicine.
Collapse
Affiliation(s)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Microbiology and Virology, Azienda Ospedaliera Universitaria (AOU) Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Mkwata HM, Omoregie AI, Nissom PM. Lytic bacteriophages isolated from limestone caves for biocontrol of Pseudomonas aeruginosa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Grant IR. Bacteriophage-Based Methods for Detection of Viable Mycobacterium avium subsp. paratuberculosis and Their Potential for Diagnosis of Johne's Disease. Front Vet Sci 2021; 8:632498. [PMID: 33778037 PMCID: PMC7991384 DOI: 10.3389/fvets.2021.632498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022] Open
Abstract
Bacteriophage-based methods for detecting Mycobacterium avium subsp. paratuberculosis (MAP) are a potential new approach for diagnosis of Johne's disease (JD). The basis of these tests is a mycobacteriophage (D29) with a lytic lifecycle that is able to infect a range of Mycobacterium spp., not just MAP. When added to a test sample, the phages will bind to and infect mycobacterial cells present. If the host mycobacterial cells are viable, the phages will take over the metabolic machinery of the cells to replicate and produce multiple copies of themselves (phage amplification), before weakening the host cell walls by enzyme action and causing cell lysis. Cell lysis releases the host cell contents, which will include ATP, various enzymes, mycobacterial host DNA and progeny D29 phages; all of which can become the target of subsequent endpoint detection methods. For MAP detection the released host DNA and progeny phages have principally been targeted. As only viable mycobacterial cells will support phage amplification, if progeny phages or host DNA are detected in the test sample (by plaque assay/phage ELISA or qPCR, respectively) then viable mycobacteria were present. This mini-review will seek to: clearly explain the basis of the phage-based tests in order to aid understanding; catalog modifications made to the original plaque assay-based phage amplification assay (FASTPlaqueTB™) over the years; and summarize the available evidence pertaining to the performance of the various phage assays for testing veterinary specimens (bovine milk, blood and feces), relative to current JD diagnostic methods (culture, fecal PCR, and blood-ELISA).
Collapse
Affiliation(s)
- Irene R Grant
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
6
|
Pathogenic Determinants of the Mycobacterium kansasii Complex: An Unsuspected Role for Distributive Conjugal Transfer. Microorganisms 2021; 9:microorganisms9020348. [PMID: 33578772 PMCID: PMC7916490 DOI: 10.3390/microorganisms9020348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/15/2023] Open
Abstract
The Mycobacterium kansasii species comprises six subtypes that were recently classified into six closely related species; Mycobacterium kansasii (formerly M. kansasii subtype 1), Mycobacterium persicum (subtype 2), Mycobacterium pseudokansasii (subtype 3), Mycobacterium ostraviense (subtype 4), Mycobacterium innocens (subtype 5) and Mycobacterium attenuatum (subtype 6). Together with Mycobacterium gastri, they form the M. kansasii complex. M. kansasii is the most frequent and most pathogenic species of the complex. M. persicum is classically associated with diseases in immunosuppressed patients, and the other species are mostly colonizers, and are only very rarely reported in ill patients. Comparative genomics was used to assess the genetic determinants leading to the pathogenicity of members of the M. kansasii complex. The genomes of 51 isolates collected from patients with and without disease were sequenced and compared with 24 publicly available genomes. The pathogenicity of each isolate was determined based on the clinical records or public metadata. A comparative genomic analysis showed that all M. persicum, M. ostraviense, M innocens and M. gastri isolates lacked the ESX-1-associated EspACD locus that is thought to play a crucial role in the pathogenicity of M. tuberculosis and other non-tuberculous mycobacteria. Furthermore, M. kansasii was the only species exhibiting a 25-Kb-large genomic island encoding for 17 type-VII secretion system-associated proteins. Finally, a genome-wide association analysis revealed that two consecutive genes encoding a hemerythrin-like protein and a nitroreductase-like protein were significantly associated with pathogenicity. These two genes may be involved in the resistance to reactive oxygen and nitrogen species, a required mechanism for the intracellular survival of bacteria. Three non-pathogenic M. kansasii lacked these genes likely due to two distinct distributive conjugal transfers (DCTs) between M. attenuatum and M. kansasii, and one DCT between M. persicum and M. kansasii. To our knowledge, this is the first study linking DCT to reduced pathogenicity.
Collapse
|
7
|
Garvey M. Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way? Antibiotics (Basel) 2020; 9:antibiotics9070414. [PMID: 32708627 PMCID: PMC7400126 DOI: 10.3390/antibiotics9070414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance necessitates action to reduce and eliminate infectious disease, ensure animal and human health, and combat emerging diseases. Species such as Acinetobacter baumanniii, vancomycin resistant Enterococcus, methicillin resistance Staphylococcus aureus, and Pseudomonas aeruginosa, as well as other WHO priority pathogens, are becoming extremely difficult to treat. In 2017, the EU adopted the “One Health” approach to combat antibiotic resistance in animal and human medicine and to prevent the transmission of zoonotic disease. As the current therapeutic agents become increasingly inadequate, there is a dire need to establish novel methods of treatment under this One Health Framework. Bacteriophages (phages), viruses infecting bacterial species, demonstrate clear antimicrobial activity against an array of resistant species, with high levels of specificity and potency. Bacteriophages play key roles in bacterial evolution and are essential components of all ecosystems, including the human microbiome. Factors such are their specificity, potency, biocompatibility, and bactericidal activity make them desirable options as therapeutics. Issues remain, however, relating to their large-scale production, formulation, stability, and bacterial resistance, limiting their implementation globally. Phages used in therapy must be virulent, purified, and well characterized before administration. Clinical studies are warranted to assess the in vivo pharmacokinetics and pharmacodynamic characteristics of phages to fully establish their therapeutic potential.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Sligo Institute of Technology, Sligo, Ireland
| |
Collapse
|
8
|
Azimi T, Mosadegh M, Nasiri MJ, Sabour S, Karimaei S, Nasser A. Phage therapy as a renewed therapeutic approach to mycobacterial infections: a comprehensive review. Infect Drug Resist 2019; 12:2943-2959. [PMID: 31571947 PMCID: PMC6756577 DOI: 10.2147/idr.s218638] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022] Open
Abstract
Mycobacterial infections are considered to a serious challenge of medicine, and the emergence of MDR and XDR tuberculosis is a serious public health problem. Tuberculosis can cause high morbidity and mortality around the world, particularly in developing countries. The emergence of drug-resistant Mycobacterium infection following limited therapeutic technologies coupled with the serious worldwide tuberculosis epidemic has adversely affected control programs, thus necessitating the study of the role bacteriophages in the treatment of mycobacterial infection. Bacteriophages are viruses that are isolated from several ecological specimens and do not exert adverse effects on patients. Phage therapy can be considered as a significant alternative to antibiotics for treating MDR and XDR mycobacterial infections. The useful ability of bacteriophages to kill Mycobacterium spp has been explored by numerous research studies that have attempted to investigate the phage therapy as a novel therapeutic/diagnosis approach to mycobacterial infections. However, there are restricted data about phage therapy for treating mycobacterial infections. This review presents comprehensive data about phage therapy in the treatment of mycobacterial infection, specifically tuberculosis disease.
Collapse
Affiliation(s)
- Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabour
- Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - Samira Karimaei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nasser
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
| |
Collapse
|
9
|
Esposito LA, Gupta S, Streiter F, Prasad A, Dennehy JJ. Evolutionary interpretations of mycobacteriophage biodiversity and host-range through the analysis of codon usage bias. Microb Genom 2016; 2:e000079. [PMID: 28348827 PMCID: PMC5359403 DOI: 10.1099/mgen.0.000079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis, a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis, but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species.
Collapse
Affiliation(s)
| | - Swati Gupta
- Biology Department, Queens College, Queens, NY 11367, USA
| | | | - Ashley Prasad
- Biology Department, Queens College, Queens, NY 11367, USA
| | - John J. Dennehy
- Biology Department, Queens College, Queens, NY 11367, USA
- Biology PhD Program, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence John J. Dennehy ()
| |
Collapse
|