1
|
Zhang Y, Wang N, Li J, Chen B, Kang Z, Song P, Zheng W. Complete genome sequence of a novel mitovirus identified in the phytopathogenic fungus Puccinia triticina. Arch Virol 2025; 170:90. [PMID: 40140110 DOI: 10.1007/s00705-025-06272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025]
Abstract
Wheat leaf rust is caused by the obligate biotrophic fungus Puccinia triticina f. sp. tritici, which seriously affects wheat production. In this study, a novel mitovirus was identified in Puccinia triticina strain HN-1 and designated as "Puccinia triticina mitovirus 1" (PtMV1). The genome of PtMV1 consists of a single RNA molecule with a length of 2,380 nt and an A + U content of 54.7% that contains a single open reading frame (ORF). The ORF is predicted to encode a putative RNA-dependent RNA polymerase (RdRp) of 653 amino acids with a molecular mass of 74.77 kDa, containing six conserved motifs. The RdRp amino acid sequence of PtMV1 has a high degree of sequence similarity to the RdRps of unuamitoviruses. Phylogenetic analysis indicated that PtMV1 is a new member of the genus Unuamitovirus within the family Mitoviridae. To our knowledge, this is the first report of a fungal virus in Puccinia triticina.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Nuoheng Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Jinyang Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Bingtao Chen
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pengyu Song
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
2
|
Mu T, Wang Z, Liu Z, Wu X. Complete genome sequence of a novel mitovirus identified in the phytopathogenic fungus Alternaria tenuissima. Arch Virol 2024; 169:218. [PMID: 39379747 DOI: 10.1007/s00705-024-06145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024]
Abstract
In this study, a novel positive-sense single-stranded RNA (+ ssRNA) mycovirus, Alternaria tenuissima mitovirus 1 (AtMV1), was identified in Alternaria tenuissima strain YQ-2-1, a phytopathogenic fungus causing leaf blight on muskmelon. The genome of AtMV1 is a single RNA molecule that is 3013 nt in length with an A + U content of 66.58% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a 313-amino-acid RNA-dependent RNA polymerase (RdRp) with a molecular mass of 35.48 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5' and 3' untranslated regions were predicted to fold into stem-loop and panhandle secondary structures. The results of a BLASTp search revealed that the amino acid (aa) sequence of RdRp of AtMV1 shared the highest sequence similarity (51.04% identity) with that of Sichuan mito-like virus 30, a member of the genus Duamitovirus within the family Mitoviridae. Phylogenetic analysis based on the aa sequence of the RdRp suggested that AtMV1 is a novel member of the genus Duamitovirus. To our knowledge, this is the first report of the complete genome sequence of a new mitovirus infecting A. tenuissima.
Collapse
Affiliation(s)
- Tongyu Mu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Zhonglei Wang
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Zhijun Liu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Zhang X, Shi H, Li J, Wu X. Complete genome sequence of a novel virus isolated from the phytopathogenic fungus Ceratobasidium sp. AG-A strain SHX-YJLC-1. Arch Virol 2023; 168:241. [PMID: 37668772 DOI: 10.1007/s00705-023-05868-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/30/2023] [Indexed: 09/06/2023]
Abstract
A novel mycovirus, Ceratobasidium bipartite virus 1 (CBV1), was identified in Ceratobasidium sp. AG-A strain SHX-YJLC-1 isolated from diseased potato stems. The complete genome of CBV1 consists of two double-stranded RNA (dsRNA) segments: dsRNA1 (2311 bp) and dsRNA2 (1761 bp). dsRNA1 contains a single open reading frame (ORF1) encoding an RNA-dependent RNA polymerase (RdRp), while dsRNA2 contains a single ORF (ORF2) encoding a hypothetical protein (HP) with unknown function. BLASTp analysis revealed that RdRp (75.04%) and HP (61.86%) encoded by the two ORFs have the highest sequence similarity to their counterparts in Rhizoctonia solani dsRNA virus 11 (RsRV11). The genome organization and phylogenetic analysis indicated that the closest relatives to CBV1 are members of the proposed family "Bipartitiviridae". Based on the collective results, CBV1 is inferred to be a new member of the proposed family "Bipartitiviridae". This is the first report on the complete genome sequence of the novel bipartitivirus CBV1, which infects Ceratobasidium sp. AG-A strain SHX-YJLC-1.
Collapse
Affiliation(s)
- Xinyi Zhang
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Hao Shi
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Jinting Li
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Li W, Sun H, Cao S, Zhang A, Zhang H, Shu Y, Chen H. Extreme Diversity of Mycoviruses Present in Single Strains of Rhizoctonia cerealis, the Pathogen of Wheat Sharp Eyespot. Microbiol Spectr 2023; 11:e0052223. [PMID: 37436153 PMCID: PMC10433806 DOI: 10.1128/spectrum.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/18/2023] [Indexed: 07/13/2023] Open
Abstract
Rhizoctonia cerealis is the pathogen of wheat sharp eyespot, which occurs throughout temperate wheat-growing regions of the world. In this project, the genomes of viruses from four strains of R. cerealis were analyzed based on Illumina high-throughput transcriptome sequencing (RNA-Seq) data. After filtering out reads that mapped to the fungal genome, viral genomes were assembled. In total, 131 virus-like sequences containing complete open reading frames (ORFs), belonging to 117 viruses, were obtained. Based on phylogenetic analysis, some of them were identified as novel members of the families Curvulaviridae, Endornaviridae, Hypoviridae, Mitoviridae, Mymonaviridae, and Phenuiviridae, while others were unclassified viruses. Most of these viruses from R. cerealis were significantly different from the viruses already reported. We propose the establishment of a new family, Rhizoctobunyaviridae, and two new genera, Rhizoctobunyavirus and Iotahypovirus. We further clarified the distribution and coinfection of these viruses in the four strains. Surprisingly, 39 viral genomes of up to 12 genera were found in strain R1084. Strain R0942, containing the fewest viruses, also contained 21 viral genomes belonging to 10 genera. Based on the RNA-Seq data, we estimated the accumulation level of some viruses in host cells and found that the mitoviruses in R. cerealis generally have very high accumulation. In conclusion, in the culturable phytopathogenic fungus R. cerealis, we discovered a considerable diversity of mycoviruses and a series of novel viruses. This study expands our understanding of the mycoviral diversity in R. cerealis and provides a rich resource for the further use of mycoviruses to control wheat sharp eyespot. IMPORTANCE Rhizoctonia cerealis is a binucleate fungus that is widely distributed worldwide and can cause sharp eyespot disease in cereal crops. In this study, 131 virus-like sequences belonging to 117 viruses were obtained based on analysis of high-throughput RNA-Seq data from four strains of R. cerealis. Many of these viruses were novel members of various virus families, while others were unclassified viruses. As a result, a new family named Rhizoctobunyaviridae and two new genera, Rhizoctobunyavirus and Iotahypovirus, were proposed. Moreover, the discovery of multiple viruses coinfecting a single host and the high accumulation levels of mitoviruses have shed light on the complex interactions between different viruses in a single host. In conclusion, a significant diversity of mycoviruses was discovered in the culturable phytopathogenic fungus R. cerealis. This study expands our understanding of mycoviral diversity, and provides a valuable resource for the further utilization of mycoviruses to control wheat diseases.
Collapse
Affiliation(s)
- Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Aixiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Haotian Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yan Shu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Zhang Y, Guo H, Zhou S, Chen D, Xu G, Kang Z, Zheng L. A Novel Mitovirus PsMV2 Facilitates the Virulence of Wheat Stripe Rust Fungus. Viruses 2023; 15:1265. [PMID: 37376565 DOI: 10.3390/v15061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Wheat stripe rust, caused by the obligate biotrophic fungus Puccinia striiformis f. sp. tritici (Pst), seriously affects wheat production. Here, we report the complete genome sequence and biological characterization of a new mitovirus from P. striiformis strain GS-1, which was designated as "Puccinia striiformis mitovirus 2" (PsMV2). Genome sequence analysis showed that PsMV2 is 2658 nt in length with an AU-rich of 52.3% and comprises a single ORF of 2348 nt encoding an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis indicated that PsMV2 is a new member of the genus Unuamitovirus within the family Mitoviridae. In addition, PsMV2 multiplied highly during Pst infection and it suppresses programmed cell death (PCD) triggered by Bax. Silencing of PsMV2 in Pst by barley stripe mosaic virus (BSMV)-mediated Host Induced Gene Silencing (HIGS) reduced fungal growth and decreased pathogenicity of Pst. These results indicate PsMV2 promotes host pathogenicity in Pst. Interestingly, PsMV2 was detected among a wide range of field isolates of Pst and may have coevolved with Pst in earlier times. Taken together, our results characterized a novel mitovirus PsMV2 in wheat stripe rust fungus, which promotes the virulence of its fungal host and wide distribution in Pst which may offer new strategies for disease control.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Hualong Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Siyu Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Daipeng Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Gang Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Li Zheng
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| |
Collapse
|
6
|
Zhao C, Li S, Ma Z, Wang W, Gao L, Han C, Yang A, Wu X. Anastomosis Groups and Mycovirome of Rhizoctonia Isolates Causing Sugar Beet Root and Crown Rot and Their Sensitivity to Flutolanil, Thifluzamide, and Pencycuron. J Fungi (Basel) 2023; 9:jof9050545. [PMID: 37233256 DOI: 10.3390/jof9050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Anastomosis groups (AGs) or subgroups of 244 Rhizoctonia isolates recovered from sugar beet roots with symptoms of root and crown rot were characterized to be AG-A, AG-K, AG-2-2IIIB, AG-2-2IV, AG-3 PT, AG-4HGI, AG-4HGII, and AG-4HGIII, with AG-4HGI (108 isolates, 44.26%) and AG-2-2IIIB (107 isolates, 43.85%) being predominate. Four unclassified mycoviruses and one hundred and one putative mycoviruses belonging to six families, namely Mitoviridae (60.00%), Narnaviridae (18.10%), Partitiviridae (7.62%), Benyviridae (4.76%), Hypoviridae (3.81%), and Botourmiaviridae (1.90%), were found to be present in these 244 Rhizoctonia isolates, most of which (88.57%) contained positive single-stranded RNA genome. The 244 Rhizoctonia isolates were all sensitive to flutolanil and thifluzamide, with average median effective concentration (EC50) value of 0.3199 ± 0.0149 μg·mL-1 and 0.1081 ± 0.0044 μg·mL-1, respectively. Among the 244 isolates, except for 20 Rhizoctonia isolates (seven isolates of AG-A and AG-K, one isolate of AG-4HGI, and 12 isolates of AG-4HGII), 117 isolates of AG-2-2IIIB, AG-2-2IV, AG-3 PT, and AG-4HGIII, 107 isolates of AG-4HGI, and six isolates of AG-4HGII were sensitive to pencycuron, with average EC50 value of 0.0339 ± 0.0012 μg·mL-1. Correlation index (ρ) of cross-resistance level between flutolanil and thifluzamide, flutolanil and pencycuron, and thifluzamide and pencycuron was 0.398, 0.315, and 0.125, respectively. This is the first detailed study on AG identification, mycovirome analysis, and sensitivity to flutolanil, thifluzamide, and pencycuron of Rhizoctonia isolates associated with sugar beet root and crown rot.
Collapse
Affiliation(s)
- Can Zhao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhihao Ma
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenjun Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lihong Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chenggui Han
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Anpei Yang
- Institute of Plant Protection, Xinjiang Academy of Agricultural Science, Urumqi 830091, China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Zhang Y, Liang X, Zhao M, Qi T, Guo H, Zhao J, Zhao J, Zhan G, Kang Z, Zheng L. A novel ambigrammatic mycovirus, PsV5, works hand in glove with wheat stripe rust fungus to facilitate infection. PLANT COMMUNICATIONS 2023; 4:100505. [PMID: 36527233 DOI: 10.1016/j.xplc.2022.100505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 05/11/2023]
Abstract
Here we describe a novel narnavirus, Puccinia striiformis virus 5 (PsV5), from the devastating wheat stripe rust fungus P. striiformis f. sp. tritici (Pst). The genome of PsV5 contains two predicted open reading frames (ORFs) that largely overlap on reverse strands: an RNA-dependent RNA polymerase (RdRp) and a reverse-frame ORF (rORF) with unknown function. Protein translations of both ORFs were demonstrated by immune technology. Transgenic wheat lines overexpressing PsV5 (RdRp-rORF), RdRp ORF, or rORF were more susceptible to Pst infection, whereas PsV5-RNA interference (RNAi) lines were more resistant. Overexpression of PsV5 (RdRp-rORF), RdRp ORF, or rORF in Fusarium graminearum also boosted fungal virulence. We thus report a novel ambigrammatic mycovirus that promotes the virulence of its fungal host. The results are a significant addition to our understanding of virosphere diversity and offer insights for sustainable wheat rust disease control.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengxin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tuo Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Hualong Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Li Zheng
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
8
|
Diversity of Mycoviruses Present in Strains of Binucleate Rhizoctonia and Multinucleate Rhizoctonia, Causal Agents for Potato Stem Canker or Black Scurf. J Fungi (Basel) 2023; 9:jof9020214. [PMID: 36836328 PMCID: PMC9967303 DOI: 10.3390/jof9020214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, the diversity of putative mycoviruses present in 66 strains of binucleate Rhizoctonia (BNR, including anastomosis group (AG)-A, AG-Fa, AG-K, and AG-W) and 192 strains of multinucleate Rhizoctonia (MNR, including AG-1-IA, AG-2-1, AG-3 PT, AG-4HGI, AG-4HGII, AG-4HGIII, and AG-5), which are the causal agents of potato stem canker or black scurf, was studied using metatranscriptome sequencing. The number of contigs related to mycoviruses identified from BNR and MNR was 173 and 485, respectively. On average, each strain of BNR accommodated 2.62 putative mycoviruses, while each strain of MNR accommodated 2.53 putative mycoviruses. Putative mycoviruses detected in both BNR and MNR contained positive single-stranded RNA (+ssRNA), double-stranded RNA (dsRNA), and negative single-stranded RNA (-ssRNA) genomes, with +ssRNA genome being the prevalent nucleic acid type (82.08% in BNR and 75.46% in MNR). Except for 3 unclassified, 170 putative mycoviruses found in BNR belonged to 13 families; excluding 33 unclassified, 452 putative mycoviruses found in MNR belonged to 19 families. Through genome organization, multiple alignments, and phylogenetic analyses, 4 new parititviruses, 39 novel mitoviruses, and 4 new hypoviruses with nearly whole genome were detected in the 258 strains of BNR and MNR.
Collapse
|
9
|
Mifsud JCO, Gallagher RV, Holmes EC, Geoghegan JL. Transcriptome Mining Expands Knowledge of RNA Viruses across the Plant Kingdom. J Virol 2022; 96:e0026022. [PMID: 35638822 PMCID: PMC9769393 DOI: 10.1128/jvi.00260-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/24/2022] [Indexed: 01/07/2023] Open
Abstract
Our current understanding of plant viruses stems largely from those affecting economically important plants. Yet plant species in cultivation represent a small and biased subset of the plant kingdom. Here, we describe virus diversity and abundance in 1,079 transcriptomes from species across the breadth of the plant kingdom (Archaeplastida) by analyzing open-source data from the 1000 Plant Transcriptomes Initiative (1KP). We identified 104 potentially novel viruses, of which 40% were single-stranded positive-sense RNA viruses across eight orders, including members of the Hepelivirales, Tymovirales, Cryppavirales, Martellivirales, and Picornavirales. One-third of the newly described viruses were double-stranded RNA viruses from the orders Durnavirales and Ghabrivirales. The remaining were negative-sense RNA viruses from the Rhabdoviridae, Aspiviridae, Yueviridae, and Phenuiviridae and the newly proposed Viridisbunyaviridae. Our analysis considerably expands the known host range of 13 virus families to include lower plants (e.g., Benyviridae and Secoviridae) and 4 virus families to include alga hosts (e.g., Tymoviridae and Chrysoviridae). More broadly, however, a cophylogeny analysis revealed that the evolutionary history of these families is largely driven by cross-species transmission events. The discovery of the first 30-kDa movement protein in a nonvascular plant suggests that the acquisition of plant virus movement proteins occurred prior to the emergence of the plant vascular system. Together, these data highlight that numerous RNA virus families are associated with older evolutionary plant lineages than previously thought and that the apparent scarcity of RNA viruses found in lower plants likely reflects a lack of investigation rather than their absence. IMPORTANCE Our knowledge of plant viruses is mainly limited to those infecting economically important host species. In particular, we know little about those viruses infecting basal plant lineages such as the ferns, lycophytes, bryophytes, and charophytes. To expand this understanding, we conducted a broad-scale viral survey of species across the breadth of the plant kingdom. We found that basal plants harbor a wide diversity of RNA viruses, including some that are sufficiently divergent to likely compose a new virus family. The basal plant virome revealed offers key insights into the evolutionary history of core plant virus gene modules and genome segments. More broadly, this work emphasizes that the scarcity of viruses found in these species to date most likely reflects the limited research in this area.
Collapse
Affiliation(s)
- Jonathon C. O. Mifsud
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Rachael V. Gallagher
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jemma L. Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Institute of Environmental Science and Research, Wellington, New Zealand
| |
Collapse
|
10
|
Sun A, Sun Y, Luo L, Zhao L, Li C, Yang G, Dong W. Molecular characterization of a novel mitovirus from Rhizoctonia solani AG-4 HGIII strain XMC-IF. Arch Virol 2022; 167:2821-2825. [PMID: 36261748 DOI: 10.1007/s00705-022-05599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/30/2022] [Indexed: 12/14/2022]
Abstract
The nucleotide sequence of a viral double-stranded RNA (dsRNA) from Rhizoctonia solani AG-4 HGIII strain XMC-IF (designated as "Rhizoctonia solani mitovirus 106", RsMV-106) was determined. The complete sequence was 2794 bp in length with a 57.50% A + U content and contained a large open reading frame (ORF) when the fungal mitochondrial genetic code was used. The ORF potentially encodes a 95.76-kDa protein containing a conserved domain of an RNA-dependent RNA polymerase (RdRp). BLASTp analysis revealed that the RdRp domain of RsMV-106 shared 47.52-73.24% sequence identity with those of viruses of the genus Duamitovirus and was most similar (73.24% identity) to that of Alternaria alternata mitovirus 1 (AaMV1). Phylogenetic analysis showed that RsMV-106 is a novel member of the genus Duamitovirus, family Mitoviridae. This is the first report of the full genome sequence of a mitovirus associated with R. solani AG-4 HGIII.
Collapse
Affiliation(s)
- Aili Sun
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Yang Sun
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Li Luo
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Lianjing Zhao
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Chengyun Li
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Genhua Yang
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China.
| | - Wenhan Dong
- Technology Department, Yunnan Agricultural University, 650201, Kunming, Yunnan, China.
| |
Collapse
|
11
|
Interspecific spread of dsRNA mycoviruses in entomogenous fungi Beauveria spp. Virus Res 2022; 322:198933. [PMID: 36165923 DOI: 10.1016/j.virusres.2022.198933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022]
Abstract
Mycoviruses can spread interspecifically and intraspecifically in plant pathogenic fungi, as well as spreading intraspecifically in entomogenous fungi, especially Beauveria bassiana. However, whether mycoviruses are common in Beauveria spp. and can spread interspecifically between Beauveria species are unclear. Herein, four Beauveria species, but not B. bassiana, were randomly selected for double stranded RNA (dsRNA) detection. Furthermore, two previously reported dsRNA mycoviruses from B. bassiana, BbCV-2 and BbPmV-4, were used to study the interspecific transmission among B. bassiana, B. amorpha, and B. aranearum, using hyphal anastomosis and a novel insect coinfection transmission method. The results showed that dsRNA mycoviruses exist universally in Beauveria spp. and could spread interspecifically between different Beauveria species. The transmission efficiency from B. bassiana to the other two Beauveria species was significantly higher than that of the reverse transmission. Both viruses could stably and vertically spread in B. amorpha and B. aranearum, which affected their growth rate and colony morphology.
Collapse
|
12
|
Six Novel Mycoviruses Containing Positive Single-Stranded RNA and Double-Stranded RNA Genomes Co-Infect a Single Strain of the Rhizoctoniasolani AG-3 PT. Viruses 2022; 14:v14040813. [PMID: 35458543 PMCID: PMC9025235 DOI: 10.3390/v14040813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Six novel mycoviruses that collectively represent the mycovirome of Rhizoctonia solani anastomosis group (AG)-3 PT strain ZJ-2H, which causes potato black scurf, were identified through metatranscriptome sequencing and putatively designated as Rhizoctonia solani fusarivirus 4 [RsFV4, positive single-stranded RNA (+ssRNA)], Rhizoctonia solani fusarivirus 5 (RsFV5, +ssRNA), Rhizoctonia solani mitovirus 40 (RsMV40, +ssRNA), Rhizoctonia solani partitivirus 10 [RsPV10, double-stranded RNA (dsRNA)], Rhizoctonia solani partitivirus 11 (RsPV11, dsRNA), and Rhizoctonia solani RNA virus 11 (RsRV11, dsRNA). Whole genome sequences of RsFV4, RsMV40, RsPV10, RsPV11, and RsRV11, as well as a partial genome sequence of RsFV5, were obtained. The 3'- and 5'- untranslated regions of the five mycoviruses with complete genome sequences were folded into stable stem-loop or panhandle secondary structures. RsFV4 and RsFV5 are most closely related to Rhizoctonia solani fusarivirus 1 (RsFV1), however, the first open reading frame (ORF) of RsFV4 and RsFV5 encode a hypothetical protein that differs from the first ORF of RsFV1, which encodes a helicase. We confirmed that RsPV10 and RsPV11 assemble into the spherical virus particles (approximately 30 nm in diameter) that were extracted from strain ZJ-2H. This is the first report that +ssRNA and dsRNA viruses co-infect a single strain of R. solani AG-3 PT.
Collapse
|
13
|
Chen Z, Chen L, Anane RF, Wang Z, Gao L, Li S, Wen G, Yu D, Zhao M. Complete genome sequence of a novel mitovirus detected in Paris polyphylla var. yunnanensis. Arch Virol 2022; 167:645-650. [PMID: 35037104 DOI: 10.1007/s00705-021-05339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Paris mitovirus 1 (ParMV1) is a positive-sense RNA virus that was detected in diseased Paris polyphylla var. yunnanensis plants in Wenshan, Yunnan. The complete genome sequence of ParMV1 is 2,751 nucleotides in length, and the genome structure is typical of mitoviruses. The ParMV1 genome has a single open reading frame (ORF; nt 358-2,637) that encodes an RNA-dependent RNA polymerase (RdRp) with a predicted molecular mass of 86.42 kDa. ParMV1 contains six conserved motifs (Ι-VΙ) that are unique to mitoviruses. The 5' and 3' termini of the genome are predicted to have a stable secondary structure, with the reverse complementary sequence forming a panhandle structure. Comparative genome analysis revealed that the RdRp of ParMV1 shares 23.1-40.6% amino acid (aa) and 32.3-45.7% nucleotide (nt) sequence identity with those of other mitoviruses. Phylogenetic analysis based on RdRp aa sequences showed that ParMV1 clusters with mitoviruses and hence should be considered a new member of the genus Mitovirus in the family Mitoviridae. This is the first report of a novel mitovirus infecting Paris polyphylla var. yunnanensis.
Collapse
Affiliation(s)
- Zeli Chen
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Lu Chen
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Rex Frimpong Anane
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.,State Key Laboratory for Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Zhe Wang
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Like Gao
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Shangyun Li
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Guosong Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Daihong Yu
- Plant Protection and Quarantine Station of Yuanjiang County, Yuxi, 653300, Yunnan, China
| | - Mingfu Zhao
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China. .,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China.
| |
Collapse
|
14
|
A novel alphapartitivirus from binucleate Rhizoctonia fumigata AG-Ba isolate C-314 Baishi. Arch Virol 2021; 167:255-259. [PMID: 34761285 DOI: 10.1007/s00705-021-05270-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 10/19/2022]
Abstract
The full-length nucleotide sequence and genome organization of a novel mycovirus designated as "Rhizoctonia fumigata partitivirus 1" (RfPV1) from Rhizoctonia fumigata AG-Ba strain C-314 Baishi was determined. The genome of RfPV1 consists of two double-stranded RNAs (dsRNAs): dsRNA1 (2003 bp) and dsRNA2 (1802 bp). Each of the two dsRNAs contains one open reading frame, coding for a putative RNA-dependent RNA polymerase and a coat protein, respectively. The 5' untranslated regions (UTRs) of both dsRNAs were conserved, and the 3'-UTRs of the two dsRNAs had interrupted poly(A) tails, similar to other partitiviruses. Phylogenetic analysis indicated that RfPV1 is a new species in the genus Alphapartitivirus, family Partitiviridae.
Collapse
|
15
|
Li S, Li Y, Hu C, Han C, Zhou T, Zhao C, Wu X. Full genome sequence of a new mitovirus from the phytopathogenic fungus Rhizoctonia solani. Arch Virol 2020; 165:1719-1723. [PMID: 32424446 DOI: 10.1007/s00705-020-04664-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022]
Abstract
A double-stranded RNA (dsRNA) segment was identified in Rhizoctonia solani anastomosis group (AG)-2-2IIIB, the primary causal agent of Rhizoctonia crown and root rot of sugar beet. The dsRNA segment represented the genome replication intermediate of a new mitovirus that was tentatively designated as "Rhizoctonia solani mitovirus 39" (RsMV-39). The complete sequence of the dsRNA was 2805 bp in length with 61.9% A+U content. Using either the fungal mitochondrial or universal genetic code, a protein of 840 amino acids containing an RNA-dependent RNA polymerase (RdRp) domain was predicted with a molecular mass of 94.46 kDa. BLASTp analysis revealed that the RdRp domain of RsMV-39 had 43.55% to 72.96% sequence identity to viruses in the genus Mitovirus, and was the most similar (72.96% identical) to that of Ceratobasidium mitovirus A (CbMV-A). Phylogenetic analysis based on RdRp domains clearly showed that RsMV-39 is a member of a distinct species in the genus Mitovirus of the family Mitoviridae. This is the first full genome sequence of a mycovirus associated with R. solani AG-2-2IIIB.
Collapse
Affiliation(s)
- Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuting Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Chenghui Hu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Chenggui Han
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
- College of Horticulture, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
16
|
Complete genome sequence of a novel mitovirus from the wheat stripe rust fungus Puccinia striiformis. Arch Virol 2019; 164:897-901. [PMID: 30600350 DOI: 10.1007/s00705-018-04134-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
The complete genome of a novel mycovirus, Puccinia striiformis mitovirus 1 (PsMV1), derived from the wheat stripe rust fungus Puccinia striiformis strain SCSN-10, was sequenced and analyzed. The full-length cDNA sequence is 2496 bp in length with a predicted AU content of 57.65% in the genomic RNA. Sequence analysis indicated that a single large open reading frame (ORF) is present on the positive strand when the fungal mitochondrial genetic code is used. The single ORF encodes a putative RNA-dependent RNA polymerase of 743 amino acids with a molecular mass of 84.9 kDa that shares the closest similarity with the corresponding proteins of Cronartium ribicola mitovirus 5 and Helicobasidium mompa mitovirus 1-18 (34% and 35% aa sequence identity, respectively). Phylogenetic analysis further indicated that PsMV1 is a new member of the genus Mitovirus within the family Narnaviridae. This is the first report of the full-length nucleotide sequence of a novel mitovirus, PsMV1, from the causal agent of wheat stripe rust.
Collapse
|
17
|
Nibert ML, Vong M, Fugate KK, Debat HJ. Evidence for contemporary plant mitoviruses. Virology 2018; 518:14-24. [PMID: 29438872 PMCID: PMC6668999 DOI: 10.1016/j.virol.2018.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Mitoviruses have small RNA(+) genomes, replicate in mitochondria, and have been shown to infect only fungi to date. For this report, sequences that appear to represent nearly complete plant mitovirus genomes were recovered from publicly available transcriptome data. Twenty of the refined sequences, 2684-2898 nt long and derived from 10 different species of land plants, appear to encompass the complete coding regions of contemporary plant mitoviruses, which furthermore constitute a monophyletic cluster within genus Mitovirus. Complete coding sequences of several of these viruses were recovered from multiple transcriptome (but not genome) studies of the same plant species and also from multiple plant tissues. Crop plants among implicated hosts include beet and hemp. Other new results suggest that such genuine plant mitoviruses were immediate ancestors to endogenized mitovirus elements now widespread in land plant genomes. Whether these mitoviruses are wholly cryptic with regard to plant health remains to be investigated.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Minh Vong
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen K Fugate
- Sugarbeet and Potato Research, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Red River Valley Agricultural Research Center, Fargo, ND 58102, USA
| | - Humberto J Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), X5020ICA, Córdoba, Argentina
| |
Collapse
|
18
|
Mitovirus UGA(Trp) codon usage parallels that of host mitochondria. Virology 2017; 507:96-100. [PMID: 28431284 DOI: 10.1016/j.virol.2017.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 02/02/2023]
Abstract
Mitoviruses replicate in mitochondria of their host fungi. They have small RNA genomes that encompass a single ORF encoding the viral RdRp. Since UGA codons encode Trp in fungal mitochondria, the RdRp ORF of a typical mitovirus includes multiple UGA codons. In some mitoviruses, however, the ORF has no such codons, suggesting that these particular viruses may be under selective pressure to exclude them. In this report, new evidence is presented that host fungi whose mitoviruses have no or few UGA codons are distinctive in also having no or few UGA codons in their core mitochondrial genes. Thus, the relative exclusion of such codons in a subset of mitoviruses appears to reflect most fundamentally that UGA(Trp) is a rare mitochondrial codon in their particular hosts. The fact that UGA(Trp) is a rare mitochondrial codon in many fungi appears not to have been widely discussed to date.
Collapse
|
19
|
Deep Sequencing Analysis Reveals the Mycoviral Diversity of the Virome of an Avirulent Isolate of Rhizoctonia solani AG-2-2 IV. PLoS One 2016; 11:e0165965. [PMID: 27814394 PMCID: PMC5096721 DOI: 10.1371/journal.pone.0165965] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
Rhizoctonia solani represents an important plant pathogenic Basidiomycota species complex and the host of many different mycoviruses, as indicated by frequent detection of dsRNA elements in natural populations of the fungus. To date, eight different mycoviruses have been characterized in Rhizoctonia and some of them have been reported to modulate its virulence. DsRNA extracts of the avirulent R. solani isolate DC17 (AG2-2-IV) displayed a diverse pattern, indicating multiple infections with mycoviruses. Deep sequencing analysis of the dsRNA extract, converted to cDNA, revealed that this isolate harbors at least 17 different mycovirus species. Based on the alignment of the conserved RNA-dependent RNA-polymerase (RdRp) domain, this viral community included putative members of the families Narnaviridae, Endornaviridae, Partitiviridae and Megabirnaviridae as well as of the order Tymovirales. Furthermore, viruses, which could not be assigned to any existing family or order, but showed similarities to so far unassigned species like Sclerotinia sclerotiorum RNA virus L, Rhizoctonia solani dsRNA virus 1, Aspergillus foetidus slow virus 2 or Rhizoctonia fumigata virus 1, were identified. This is the first report of a fungal isolate infected by 17 different viral species and a valuable study case to explore the diversity of mycoviruses infecting R. solani.
Collapse
|
20
|
Characterization of Five Novel Mitoviruses in the White Pine Blister Rust Fungus Cronartium ribicola. PLoS One 2016; 11:e0154267. [PMID: 27196406 PMCID: PMC4873031 DOI: 10.1371/journal.pone.0154267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
The white pine blister rust (WPBR) fungus Cronartium ribicola (J.C. Fisch.) is an exotic invasive forest pathogen causing severe stem canker disease of native white pine trees (subgenus Strobus) in North America. The present study reports discovery of five novel mitoviruses in C. ribicola by deep RNA sequencing. The complete genome of each mitovirus was determined by rapid amplification of cDNA ends (RACE) and reverse transcriptase-polymerase chain reaction (RT-PCR). A single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) was detected in each of the viral genomes using mitochondrial genetic codes. Phylogenetic analysis indicated that the C. ribicola mitoviruses (CrMV1 to CrMV5) are new putative species of the genus Mitovirus. qRT-PCR and RNA-Seq analyses revealed that viral RNAs were significantly increased in fungal mycelia in cankered pine stems compared to expression during two different stages of spore development, suggesting that viral genome replication and transcription benefit from active growth of the host fungus. CrMVs were widespread with relatively high levels of minor allele frequency (MAF) in western North America. As the first report of mitoviruses in the Class Pucciniomycetes, this work allows further investigation of the dynamics of a viral community in the WPBR pathosystem, including potential impacts that may affect pathogenicity and virulence of the host fungus.
Collapse
|