1
|
Quadros AFF, Ferro CG, de Rezende RR, Godinho MT, Xavier CAD, Nogueira AM, Alfenas-Zerbini P, Zerbini FM. Begomovirus populations in single plants are complex and may include both well-adapted and poorly-adapted viruses. Virus Res 2023; 323:198969. [PMID: 36257487 PMCID: PMC10194161 DOI: 10.1016/j.virusres.2022.198969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Begomoviruses (single-stranded DNA plant viruses transmitted by whiteflies) are economically important pathogens causing epidemics worldwide. Tomato-infecting begomoviruses emerged in Brazil in the 1990's following the introduction of Bemisia tabaci Middle East-Asia Minor 1. It is believed that these viruses evolved from indigenous viruses infecting non-cultivated hosts. However, tomato-infecting viruses are rarely found in non-cultivated hosts, and vice-versa. It is possible that viral populations in a given host are composed primarily of viruses which are well adapted to this host, but also include a small proportion of poorly adapted viruses. Following transfer to a new host, the composition of the viral population would shift rapidly, with the viruses which are better adapted to the new host becoming predominant. To test this hypothesis, we collected tomato and Sida plants growing next to each other at two locations in 2014 and 2018. Total DNA was extracted from tomato and Sida samples from each location and year and used as a template for high-throughput sequencing. Reads were mapped following a highly stringent set of criteria. For the 2014 samples, >98% of the Sida reads mapped to Sida micrantha mosaic virus (SiMMV), but 0.1% of the reads mapped to tomato severe rugose virus (ToSRV). Conversely, >99% of the tomato reads mapped to ToSRV, with 0.18% mapping to SiMMV. For the 2018 samples, 41% of the Sida reads mapped to three Sida-adapted viruses and 0.1% of the reads mapped to ToSRV, while 99.9% of the tomato reads mapped to ToSRV. These results are consistent with the hypothesis that viral populations in a single plant are composed primarily of the virus that is better adapted to the host but also include a small proportion of viruses that are poorly adapted.
Collapse
Affiliation(s)
- Ayane F F Quadros
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Camila G Ferro
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Rafael R de Rezende
- Dep. de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Márcio T Godinho
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - César A D Xavier
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Angélica M Nogueira
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - P Alfenas-Zerbini
- Dep. de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
2
|
Reyna PG, Bejerman N, Laguna IG, Pardina PR. Biological and molecular characterization of bean bushy stunt virus, a novel bipartite begomovirus infecting common bean in northwestern Argentina. Arch Virol 2021; 166:1409-1414. [PMID: 33646405 DOI: 10.1007/s00705-021-05002-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 01/01/2021] [Indexed: 11/25/2022]
Abstract
Common bean plants (Phaseolus vulgaris L.) showing different virus-like symptoms were collected in northwestern Argentina. Dot-blot hybridization tests showed that the begomoviruses bean golden mosaic virus and tomato yellow vein streak virus were the most prevalent, but they also revealed the presence of unknown begomoviruses. The complete genome sequence of one of these unknown begomoviruses was determined. Sequence analysis showed that the virus is a typical New World begomovirus, for which the name "bean bushy stunt virus" (BBSV) is proposed. Biological assays based on biolistic inoculations showed that BBSV induced leaf roll and stunting symptoms similar to those observed in the field-collected common bean sample.
Collapse
Affiliation(s)
- Pablo Gastón Reyna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Avenida 11 de Septiembre 4755, X5014MGO, Córdoba, Argentina.
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Avenida 11 de Septiembre 4755, X5014MGO, Córdoba, Argentina.
| | - Nicolás Bejerman
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Avenida 11 de Septiembre 4755, X5014MGO, Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Avenida 11 de Septiembre 4755, X5014MGO, Córdoba, Argentina
| | - Irma Graciela Laguna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Avenida 11 de Septiembre 4755, X5014MGO, Córdoba, Argentina
| | - Patricia Rodríguez Pardina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Avenida 11 de Septiembre 4755, X5014MGO, Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Avenida 11 de Septiembre 4755, X5014MGO, Córdoba, Argentina
| |
Collapse
|
3
|
Zhang P, Li X, Ren L, Chen S, Wang J. A potyvirus isolated from Mirabilis jalapa in China represents a new species. Arch Virol 2019; 165:505-507. [DOI: 10.1007/s00705-019-04453-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
|
4
|
García-Arenal F, Zerbini FM. Life on the Edge: Geminiviruses at the Interface Between Crops and Wild Plant Hosts. Annu Rev Virol 2019; 6:411-433. [PMID: 31180812 DOI: 10.1146/annurev-virology-092818-015536] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses constitute the largest group of emerging pathogens, and geminiviruses (plant viruses with circular, single-stranded DNA genomes) are the major group of emerging plant viruses. With their high potential for genetic variation due to mutation and recombination, their efficient spread by vectors, and their wide host range as a group, including both wild and cultivated hosts, geminiviruses are attractive models for the study of the evolutionary and ecological factors driving virus emergence. Studies on the epidemiological features of geminivirus diseases have traditionally focused primarily on crop plants. Nevertheless, knowledge of geminivirus infection in wild plants, and especially at the interface between wild and cultivated plants, is necessary to provide a complete view of their ecology, evolution, and emergence. In this review, we address the most relevant aspects of geminivirus variability and evolution in wild and crop plants and geminiviruses' potential to emerge in crops.
Collapse
Affiliation(s)
- Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), and National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| |
Collapse
|
5
|
Quadros AFF, Silva JP, Xavier CAD, Zerbini FM, Boari AJ. Two new begomoviruses infecting tomato and Hibiscus sp. in the Amazon region of Brazil. Arch Virol 2019; 164:1897-1901. [PMID: 30972592 DOI: 10.1007/s00705-019-04245-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Two begomoviruses were isolated in the northern Brazilian state of Pará, infecting non-cultivated Hibiscus sp. and cultivated tomato (Solanum lycopersicum). The complete genomes (DNA-A and DNA-B) of the two viruses showed the typical organization of New World bipartite begomoviruses. Based on the species assignment criteria in the genus Begomovirus, each virus is a member of a new species. The virus from Hibiscus is most closely related to sida yellow mosaic Yucatan virus, while the tomato virus is most closely related to abutilon mosaic Brazil virus and corchorus mottle virus. Recombination events were detected in the DNA-A of the tomato virus, but not in the Hibiscus virus genome. We propose the names "hibiscus golden mosaic virus" (HGMV) and "tomato chlorotic leaf curl virus" (ToCLCV) for the viruses reported in this study.
Collapse
Affiliation(s)
- Ayane F F Quadros
- Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro s/n, Belém, PA, 66095-903, Brazil.,Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - João Paulo Silva
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - César A D Xavier
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Alessandra J Boari
- Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro s/n, Belém, PA, 66095-903, Brazil.
| |
Collapse
|
6
|
Genetic variability and population structure of the New World begomovirus Euphorbia yellow mosaic virus. J Gen Virol 2017; 98:1537-1551. [DOI: 10.1099/jgv.0.000784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
7
|
Complete genome sequence of a new bipartite begomovirus infecting cotton in the Republic of Benin in West Africa. Arch Virol 2016; 161:2329-33. [PMID: 27224982 DOI: 10.1007/s00705-016-2894-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
Here, we report the complete genome sequence of a novel bipartite begomovirus isolated from cotton plants (Gossypium raimondii, Malvaceae) exhibiting light yellow mosaic symptoms. The genome sequence was determined by Illumina DNA sequencing and confirmed by Sanger sequencing of RCA-enriched, cloned circular genomic components. The DNA-A and DNA-B components were each ~2.7 kb in size, and their genome arrangement was characteristic of other Old World bipartite begomoviruses. While the DNA-A component was most closely related to tobacco leaf curl Comoros virus (TbLCKMV) at 80 %, the DNA-B component had as its closet relative soybean chlorotic blotch virus (SbCBV) at 66 %. This previously undescribed begomovirus is herein named "cotton yellow mosaic virus" (CYMV).
Collapse
|
8
|
Complete nucleotide sequences of a new bipartite begomovirus from Malvastrum sp. plants with bright yellow mosaic symptoms in South Texas. Arch Virol 2016; 161:1729-33. [PMID: 27016928 DOI: 10.1007/s00705-016-2821-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Two isolates of a novel bipartite begomovirus, tentatively named malvastrum bright yellow mosaic virus (MaBYMV), were molecularly characterized from naturally infected plants of the genus Malvastrum showing bright yellow mosaic disease symptoms in South Texas. Six complete DNA-A and five DNA-B genome sequences of MaBYMV obtained from the isolates ranged in length from 2,608 to 2,609 nucleotides (nt) and 2,578 to 2,605 nt, respectively. Both genome segments shared a 178- to 180-nt common region. In pairwise comparisons, the complete DNA-A and DNA-B sequences of MaBYMV were most similar (87-88 % and 79-81 % identity, respectively) and phylogenetically related to the corresponding sequences of sida mosaic Sinaloa virus-[MX-Gua-06]. Further analysis revealed that MaBYMV is a putative recombinant virus, thus supporting the notion that malvaceous hosts may be influencing the evolution of several begomoviruses. The design of new diagnostic primers enabled the detection of MaBYMV in cohorts of Bemisia tabaci collected from symptomatic Malvastrum sp. plants, thus implicating whiteflies as potential vectors of the virus.
Collapse
|