1
|
Brine TJ, Crawshaw S, Murphy AM, Pate AE, Carr JP, Wamonje FO. Identification and characterization of Phaseolus vulgaris endornavirus 1, 2 and 3 in common bean cultivars of East Africa. Virus Genes 2023; 59:741-751. [PMID: 37563541 PMCID: PMC10500008 DOI: 10.1007/s11262-023-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Persistent viruses include members of the family Endornavirus that cause no apparent disease and are transmitted exclusively via seed or pollen. It is speculated that these RNA viruses may be mutualists that enhance plant resilience to biotic and abiotic stresses. Using reverse transcription coupled polymerase chain reactions, we investigated if common bean (Phaseolus vulgaris L.) varieties popular in east Africa were hosts for Phaseolus vulgaris endornavirus (PvEV) 1, 2 or 3. Out of 26 bean varieties examined, four were infected with PvEV1, three were infected with both PvEV1 and PvEV2 and three had infections of all three (PvEV) 1, 2 and 3. Notably, this was the first identification of PvEV3 in common bean from Africa. Using high-throughput sequencing of two east African bean varieties (KK022 and KK072), we confirmed the presence of these viruses and generated their genomes. Intra- and inter-species sequence comparisons of these genomes with comparator sequences from GenBank revealed clear species demarcation. In addition, phylogenetic analyses based on sequences generated from the helicase domains showed that geographical distribution does not correlate to genetic relatedness or the occurrence of endornaviruses. These findings are an important first step towards future investigations to determine if these viruses engender positive effects in common bean, a vital crop in east Africa.
Collapse
Affiliation(s)
- Thomas J Brine
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
- Pest and Pathogen Ecology, National Institute of Agricultural Botany, East Malling, ME19 6BJ, UK.
| |
Collapse
|
2
|
Brine TJ, Viswanathan SB, Murphy AM, Pate AE, Wamonje FO, Carr JP. Investigating the interactions of endornaviruses with each other and with other viruses in common bean, Phaseolus vulgaris. Virol J 2023; 20:216. [PMID: 37737192 PMCID: PMC10515030 DOI: 10.1186/s12985-023-02184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Plant viruses of the genus Alphaendornavirus are transmitted solely via seed and pollen and generally cause no apparent disease. It has been conjectured that certain plant endornaviruses may confer advantages on their hosts through improved performance (e.g., seed yield) or resilience to abiotic or biotic insult. We recently characterised nine common bean (Phaseolus vulgaris L.) varieties that harboured either Phaseolus vulgaris endornavirus (PvEV1) alone, or PvEV1 in combination with PvEV2 or PvEV1 in combination with PvEV2 and PvEV3. Here, we investigated the interactions of these endornaviruses with each other, and with three infectious pathogenic viruses: cucumber mosaic virus (CMV), bean common mosaic virus (BCMV), and bean common mosaic necrosis virus (BCMNV). RESULTS In lines harbouring PvEV1, PvEV1 and PvEV2, or PvEV1, PvEV2 plus PvEV3, the levels of PvEV1 and PvEV3 RNA were very similar between lines, although there were variations in PvEV2 RNA accumulation. In plants inoculated with infectious viruses, CMV, BCMV and BCMNV levels varied between lines, but this was most likely due to host genotype differences rather than to the presence or absence of endornaviruses. We tested the effects of endornaviruses on seed production and seedborne transmission of infectious pathogenic viruses but found no consistent relationship between the presence of endornaviruses and seed yield or protection from seedborne transmission of infectious pathogenic viruses. CONCLUSIONS It was concluded that endornaviruses do not interfere with each other's accumulation. There appears to be no direct synergy or competition between infectious pathogenic viruses and endornaviruses, however, the effects of host genotype may obscure interactions between endornaviruses and infectious viruses. There is no consistent effect of endornaviruses on seed yield or susceptibility to seedborne transmission of other viruses.
Collapse
Affiliation(s)
- Thomas J Brine
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Pest and Pathogen Ecology, National Institute of Agricultural Botany, East Malling, ME19 6BJ, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
3
|
Lee HJ, Kim SM, Jeong RD. Analysis of Wheat Virome in Korea Using Illumina and Oxford Nanopore Sequencing Platforms. PLANTS (BASEL, SWITZERLAND) 2023; 12:2374. [PMID: 37375999 DOI: 10.3390/plants12122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important staple crops in the world, along with maize and rice. More than 50 plant viruses are known to infect wheat worldwide. To date, there are no studies on the identification of viruses infecting wheat in Korea. Therefore, we investigated virome in wheat from three different geographical regions where wheat is mainly cultivated in Korea using Oxford Nanopore Technology (ONT) sequencing and Illumina sequencing. Five viral species, including those known to infect wheat, were identified using high-throughput sequencing strategies. Of these, barley virus G (BVG) and Hordeum vulgare endornavirus (HvEV) were consistently present in all libraries. Sugarcane yellow leaf virus (SCYLV) and wheat leaf yellowing-associated virus (WLYaV) were first identified in Korean wheat samples. The viruses identified by ONT and Illumina sequencing were compared using a heatmap. Though the ONT sequencing approach is less sensitive, the analysis results were similar to those of Illumina sequencing in our study. Both platforms served as reliable and powerful tools for detecting and identifying wheat viruses, achieving a balance between practicality and performance. The findings of this study will provide deeper insights into the wheat virosphere and further help improve disease management strategies.
Collapse
Affiliation(s)
- Hyo-Jeong Lee
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Republic of Korea
| | - Sang-Min Kim
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Republic of Korea
| |
Collapse
|
4
|
Wang J, Ni Y, Liu X, Zhao H, Xiao Y, Xiao X, Li S, Liu H. Divergent RNA viruses in Macrophomina phaseolina exhibit potential as virocontrol agents. Virus Evol 2020; 7:veaa095. [PMID: 33505706 PMCID: PMC7816680 DOI: 10.1093/ve/veaa095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macrophomina phaseolina is an important necrotrophic phytopathogenic fungus and cause extensive damage in many oilseed crops. Twelve M.phaseolina isolates with diverse biological phenotypes were selected for a high-throughput sequencing-based metatranscriptomic and bioinformatics analysis to identify viruses infecting M.phaseolina. The analysis identified 40 partial or nearly complete viral genome segments, 31 of which were novel viruses. Among these viral sequences, 43% of the viral genomes were double-stranded RNA (dsRNA), 47% were positive single-stranded RNA (ssRNA+), and the remaining 10% were negative sense-stranded RNA (ssRNA−). The 40 viruses showed affinity to 13 distinct viral lineages, including Bunyavirales (four viruses), Totiviridae (three viruses), Chrysoviridae (five viruses), Partitiviridae (four viruses), Hypoviridae (one virus), Endornaviridae (two viruses), Tombusviridae (three viruses), Narnaviridae (one virus), Potyviridae (one virus), Bromoviridae (one virus), Virgaviridae (six viruses), ‘Fusagraviridae’ (five viruses), and Ourmiavirus (four viruses). Two viruses are closely related to two families, Potyviridae and Bromoviridae, which previously contained no mycovirus species. Moreover, nine novel viruses associated with M.phaseolina were identified in the family Totiviridae, Endornaviridae, and Partitiviridae. Coinfection with multiple viruses is prevalent in M.phaseolina, with each isolate harboring different numbers of viruses, ranging from three to eighteen. Furthermore, the effects of the viruses on the fungal host were analyzed according to the biological characteristics of each isolate. The results suggested that M.phaseolina hypovirus 2, M.phaseolina fusagravirus virus 1-5 (MpFV1-5), M.phaseolina endornavirus 1-2 (MpEV1-2), M.phaseolina ourmia-like virus 1-3 (MpOLV1-3), M.phaseolina mitovirus 4 (MpMV4), and M.phaseolina mycobunyavirus 1-4 (MpMBV1-4) were only detected in hypovirulent isolates. Those viruses associated with hypovirulence might be used as biological control agents as an environmentally friendly alternative to chemical fungicides. These findings considerably expand our understanding of mycoviruses in M.phaseolina and unvailed the presence of a huge difference among viruses in isolates from different hosts in distant geographical regions. Together, the present study provides new knowledge about viral evolution and fungus-virus coevolution.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China.,Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pest in Huanghuai Growing Area, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Yunxia Ni
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Xintao Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Hui Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Yannong Xiao
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, PR China
| | - Xueqiong Xiao
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, PR China
| | - Shujun Li
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pest in Huanghuai Growing Area, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Hongyan Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| |
Collapse
|
5
|
Identification of Viruses and Viroids Infecting Tomato and Pepper Plants in Vietnam by Metatranscriptomics. Int J Mol Sci 2020; 21:ijms21207565. [PMID: 33066322 PMCID: PMC7593927 DOI: 10.3390/ijms21207565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Tomato (Lycopersicum esculentum L.) and pepper (Capsicum annuum L.) plants belonging to the family Solanaceae are cultivated worldwide. The rapid development of next-generation sequencing (NGS) technology facilitates the identification of viruses and viroids infecting plants. In this study, we carried out metatranscriptomics using RNA sequencing followed by bioinformatics analyses to identify viruses and viroids infecting tomato and pepper plants in Vietnam. We prepared a total of 16 libraries, including eight tomato and eight pepper libraries derived from different geographical regions in Vietnam. We identified a total of 602 virus-associated contigs, which were assigned to 18 different virus species belonging to nine different viral genera. We identified 13 different viruses and two viroids infecting tomato plants and 12 viruses and two viroids infecting pepper plants with viruses as dominantly observed pathogens. Our results showed that multiple infection of different viral pathogens was common in both plants. Moreover, geographical region and host plant were two major factors to determine viral populations. Taken together, our results provide the comprehensive overview of viral pathogens infecting two important plants in the family Solanaceae grown in Vietnam.
Collapse
|
6
|
Herschlag R, Okada R, Alcalá-Briseño RI, de Souto ER, Valverde RA. Identification of a novel endornavirus in Geranium carolinianum and occurrence within three agroecosystems. Virus Res 2020; 288:198116. [PMID: 32795491 DOI: 10.1016/j.virusres.2020.198116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
A putative endornavirus was detected in Carolina geranium (Geranium carolinianum) in Louisiana, USA. The virus was provisionally named Geranium carolinianum endornavirus 1 (GcEV1). The viral RNA was sequenced, and it consisted of 14,625 nt containing a single ORF coding a putative polyprotein of 4815 aa with conserved domains for a helicase 1, peptidase C97, glycosyl transferase GTB-type, and RNA-dependent RNA polymerase 2. The 5'end consisted of 130 nt while the 3'end consisted of 54 nt ending in nine cytosine residues. The closest relative to GcEV1 was Phaseolus vulgaris endornavirus 3. In phylogenetic analyses, GcEV1 clustered with members of the genus Alphaendornavirus. GcEV1 was detected in 57 of 60 G. carolinianum plants collected from three distinct agroecosystems. The virus was not detected in eight other species of the genus Geranium. There was no association of a particular phenotypic trait of the host with the presence or absence of the virus. GcEV1 was transmitted at a rate of 100% in seeds of a self-pollinated G. carolinianum plant.
Collapse
Affiliation(s)
- Rachel Herschlag
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Ryo Okada
- Laboratory of Molecular and Cellular Biology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | | | - Eliezer Rodrigues de Souto
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Rodrigo A Valverde
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| |
Collapse
|
7
|
Golyaev V, Candresse T, Rabenstein F, Pooggin MM. Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Sci Rep 2019; 9:19268. [PMID: 31848375 PMCID: PMC6917709 DOI: 10.1038/s41598-019-55547-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
In plants, RNA interference (RNAi) generates small interfering (si)RNAs from entire genomes of viruses, satellites and viroids. Therefore, deep small (s)RNA sequencing is a universal approach for virome reconstruction and RNAi characterization. We tested this approach on dried barley leaves from field surveys. Illumina sequencing of sRNAs from 2 plant samples identified in both plants Hordeum vulgare endornavirus (HvEV) and barley yellow mosaic bymovirus (BaYMV) and, additionally in one plant, a novel strain of Japanese soil-borne wheat mosaic furovirus (JSBWMV). De novo and reference-based sRNA assembly yielded complete or near-complete genomic RNAs of these viruses. While plant sRNAs showed broad size distribution, viral sRNAs were predominantly 21 and 22 nucleotides long with 5′-terminal uridine or adenine, and were derived from both genomic strands. These bona fide siRNAs are presumably processed from double-stranded RNA precursors by Dicer-like (DCL) 4 and DCL2, respectively, and associated with Argonaute 1 and 2 proteins. For BaYMV (but not HvEV, or JSBWMV), 24-nucleotide sRNAs represented the third most abundant class, suggesting DCL3 contribution to anti-bymovirus defence. Thus, viral siRNAs are well preserved in dried leaf tissues and not contaminated by non-RNAi degradation products, enabling both complete virome reconstruction and inference of RNAi components mediating antiviral defense.
Collapse
Affiliation(s)
- Victor Golyaev
- BGPI, INRA Centre Occitanie, CIRAD, SupAgro, Université de Montpellier, Montpellier, 34984, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS20032, Villenave d'Ornon cedex, 33882, France
| | - Frank Rabenstein
- Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Erwin-Baur-Straße 27, Quedlinburg, 06484, Germany
| | - Mikhail M Pooggin
- BGPI, INRA Centre Occitanie, CIRAD, SupAgro, Université de Montpellier, Montpellier, 34984, France.
| |
Collapse
|
8
|
Herschlag R, Escalante C, de Souto ER, Khankhum S, Okada R, Valverde RA. Occurrence of putative endornaviruses in non-cultivated plant species in South Louisiana. Arch Virol 2019; 164:1863-1868. [DOI: 10.1007/s00705-019-04270-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/30/2019] [Indexed: 01/12/2023]
|
9
|
Endornaviruses: persistent dsRNA viruses with symbiotic properties in diverse eukaryotes. Virus Genes 2019; 55:165-173. [DOI: 10.1007/s11262-019-01635-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
|
10
|
Jo Y, Bae JY, Kim SM, Choi H, Lee BC, Cho WK. Barley RNA viromes in six different geographical regions in Korea. Sci Rep 2018; 8:13237. [PMID: 30185900 PMCID: PMC6125401 DOI: 10.1038/s41598-018-31671-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/15/2018] [Indexed: 01/07/2023] Open
Abstract
Barley is a kind of cereal grass belonging to the family Poaceae. To examine viruses infecting winter barley in Korea, we carried out a comprehensive study of barley RNA viromes using next-generation sequencing (NGS). A total of 110 barley leaf samples from 17 geographical locations were collected. NGS followed by extensive bioinformatics analyses revealed six different barley viromes: Barley yellow mosaic virus (BaYMV), Barley mild mosaic virus (BaMMV), Barley yellow dwarf virus (BYDV), Hordeum vulgare endornavirus (HvEV), and Barley virus G (BVG). BaYMV and HvEV were identified in all libraries, while other viruses were identified in some specific library. Based on the number of virus-associated reads, BaYMV was a dominant virus infecting winter barley in Korea causing yellow disease symptoms. We obtained nearly complete genomes of six BaYMV isolates and two BaMMV isolates. Phylogenetic analyses indicate that BaYMV and BaMMV were largely grouped based on geographical regions such as Asia and Europe. Single nucleotide polymorphisms analyses suggested that most BaYMV and BaMMV showed strong genetic variations; however, BaYMV isolate Jeonju and BaMMV isolate Gunsan exhibited a few and no SNPs, respectively, suggesting low level of genetic variation. Taken together, this is the first study of barley RNA viromes in Korea.
Collapse
Affiliation(s)
- Yeonhwa Jo
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Young Bae
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, Republic of Korea
| | - Sang-Min Kim
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, Republic of Korea
| | - Hoseong Choi
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bong Choon Lee
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, Republic of Korea.
| | - Won Kyong Cho
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Genomic sequence of a novel endornavirus from Phaseolus vulgaris and occurrence in mixed infections with two other endornaviruses. Virus Res 2018; 257:63-67. [DOI: 10.1016/j.virusres.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
|
12
|
Rolland M, Villemot J, Marais A, Theil S, Faure C, Cadot V, Valade R, Vitry C, Rabenstein F, Candresse T. Classical and next generation sequencing approaches unravel Bymovirus diversity in barley crops in France. PLoS One 2017; 12:e0188495. [PMID: 29182661 PMCID: PMC5705140 DOI: 10.1371/journal.pone.0188495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/08/2017] [Indexed: 11/18/2022] Open
Abstract
Despite the generalized use of cultivars carrying the rym4 resistance gene, the impact of viral mosaic diseases on winter barleys increased in recent years in France. This change could reflect i) an increased prevalence of the rym4 resistance-breaking pathotype of Barley yellow mosaic virus Y (BaYMV-2), ii) the emergence of rym4 resistance-breaking pathotypes of Barley mild mosaic virus (BaMMV) or iii) the emergence of other viruses. A study was undertaken to determine the distribution and diversity of viruses causing yellow mosaic disease. A collection of 241 symptomatic leaf samples from susceptible, rym4 and rym5 varieties was gathered from 117 sites. The viruses present in all samples were identified by specific RT-PCR assays and, for selected samples, by double-stranded RNA next-generation sequencing (NGS). The results show that BaYMV-2 is responsible for the symptoms observed in varieties carrying the resistance gene rym4. In susceptible varieties, both BaYMV-1 and BaYMV-2 were detected, together with BaMMV. Phylogenetic analyses indicate that the rym4 resistance-breaking ability independently evolved in multiple genetic backgrounds. Parallel analyses revealed a similar scenario of multiple independent emergence events in BaMMV for rym5 resistance-breaking, likely involving multiple amino acid positions in the viral-linked genome protein. NGS analyses and classical techniques provided highly convergent results, highlighting and validating the power of NGS approaches for diagnostics and viral population characterization.
Collapse
Affiliation(s)
- Mathieu Rolland
- Groupe d'Etude et de contrôle des Variétés Et des Semences, Beaucouzé, France
| | - Julie Villemot
- Groupe d'Etude et de contrôle des Variétés Et des Semences, Beaucouzé, France
| | - Armelle Marais
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université de Bordeaux, Villenave d’Ornon, France
| | - Sébastien Theil
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université de Bordeaux, Villenave d’Ornon, France
| | - Chantal Faure
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université de Bordeaux, Villenave d’Ornon, France
| | - Valérie Cadot
- Groupe d'Etude et de contrôle des Variétés Et des Semences, Beaucouzé, France
| | - Romain Valade
- ARVALIS–Institut du végétal, Thiverval-Grignon, France
| | - Cindy Vitry
- ARVALIS–Institut du végétal, Thiverval-Grignon, France
| | | | - Thierry Candresse
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université de Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
13
|
Nordenstedt N, Marcenaro D, Chilagane D, Mwaipopo B, Rajamäki ML, Nchimbi-Msolla S, Njau PJR, Mbanzibwa DR, Valkonen JPT. Pathogenic seedborne viruses are rare but Phaseolus vulgaris endornaviruses are common in bean varieties grown in Nicaragua and Tanzania. PLoS One 2017; 12:e0178242. [PMID: 28542624 PMCID: PMC5444779 DOI: 10.1371/journal.pone.0178242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/10/2017] [Indexed: 12/29/2022] Open
Abstract
Common bean (Phaseolus vulgaris) is an annual grain legume that was domesticated in Mesoamerica (Central America) and the Andes. It is currently grown widely also on other continents including Africa. We surveyed seedborne viruses in new common bean varieties introduced to Nicaragua (Central America) and in landraces and improved varieties grown in Tanzania (eastern Africa). Bean seeds, harvested from Nicaragua and Tanzania, were grown in insect-controlled greenhouse or screenhouse, respectively, to obtain leaf material for virus testing. Equal amounts of total RNA from different samples were pooled (30-36 samples per pool), and small RNAs were deep-sequenced (Illumina). Assembly of the reads (21-24 nt) to contiguous sequences and searches for homologous viral sequences in databases revealed Phaseolus vulgaris endornavirus 1 (PvEV-1) and PvEV-2 in the bean varieties in Nicaragua and Tanzania. These viruses are not known to cause symptoms in common bean and are considered non-pathogenic. The small-RNA reads from each pool of samples were mapped to the previously characterized complete PvEV-1 and PvEV-2 sequences (genome lengths ca. 14 kb and 15 kb, respectively). Coverage of the viral genomes was 87.9-99.9%, depending on the pool. Coverage per nucleotide ranged from 5 to 471, confirming virus identification. PvEV-1 and PvEV-2 are known to occur in Phaseolus spp. in Central America, but there is little previous information about their occurrence in Nicaragua, and no information about occurrence in Africa. Aside from Cowpea mild mosaic virus detected in bean plants grown from been seeds harvested from one region in Tanzania, no other pathogenic seedborne viruses were detected. The low incidence of infections caused by pathogenic viruses transmitted via bean seeds may be attributable to new, virus-resistant CB varieties released by breeding programs in Nicaragua and Tanzania.
Collapse
Affiliation(s)
- Noora Nordenstedt
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Delfia Marcenaro
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Nicaraguan Institute of Agricultural Technology (CNIAB-INTA), Managua, Nicaragua
| | - Daudi Chilagane
- Sokoine University of Agriculture, Morogoro, Tanzania
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - Beatrice Mwaipopo
- Sokoine University of Agriculture, Morogoro, Tanzania
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | | | | | | | | | - Jari P. T. Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Molecular and biological properties of an endornavirus infecting winged bean (Psophocarpus tetragonolobus). Virus Genes 2016; 53:141-145. [DOI: 10.1007/s11262-016-1398-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|