2
|
Luo J, Zhang Y, Zhang Q, Wu Y, Zhang B, Mo M, Tian Q, Zhao J, Mei M, Guo X. The Deoptimization of Rabies Virus Matrix Protein Impacts Viral Transcription and Replication. Viruses 2019; 12:v12010004. [PMID: 31861477 PMCID: PMC7019236 DOI: 10.3390/v12010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Rabies virus (RABV) matrix (M) protein plays several important roles during RABV infection. Although previous studies have assessed the functions of M through gene rearrangements, this interferes with the position of other viral proteins. In this study, we attenuated M expression through deoptimizing its codon usage based on codon pair bias in RABV. This strategy more objectively clarifies the role of M during virus infection. Codon-deoptimized M inhibited RABV replication during the early stages of infection, but enhanced viral titers at later stages. Codon-deoptimized M also inhibited genome synthesis at early stage of infection and increased the RABV transcription rates. Attenuated M through codon deoptimization enhanced RABV glycoprotein expression following RABV infection in neuronal cells, but had no influence on the cell-to-cell spread of RABV. In addition, codon-deoptimized M virus induced higher levels of apoptosis compared to the parental RABV. These results indicate that codon-deoptimized M increases glycoprotein expression, providing a foundation for further investigation of the role of M during RABV infection.
Collapse
|
3
|
Pei J, Huang F, Wu Q, Luo Z, Zhang Y, Ruan J, Li Y, Zhou M, Fu Z, Zhao L. Codon optimization of G protein enhances rabies virus-induced humoral immunity. J Gen Virol 2019; 100:1222-1233. [PMID: 31259681 DOI: 10.1099/jgv.0.001299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Rabies, caused by rabies virus (RABV), is a fatal zoonosis, which still poses a threat to public health in most parts of the world. Glycoprotein of RABV is the only viral surface protein, which is critical for the induction of virus-neutralizing antibodies (VNA). In order to improve the production of VNA, recombinant RABVs containing two copies of G gene and codon-optimized G gene were constructed by using reverse genetics, named LBNSE-dG and LBNSE-dOG, respectively. After being inoculated into the mouse brains, LBNSE-dOG induced more apoptosis and recruited more inflammatory cells than LBNSE-dG and LBNSE, resulting in reduced virulence in vivo. After intramuscular (im) immunization in mice, LBNSE-dOG promoted the formation of germinal centres (GCs), the recruitment of GC B cells and the generation of antibody-secreting cells (ASCs) in the draining lymph nodes (LNs). Consistently, LBNSE-dOG boosted the production of VNA and provided better protection against lethal RABV challenge than LBNSE-dG and LBNSE when it was used as both live and inactivated vaccines. Our results demonstrate that the codon-optimized RABV LBNSE-dOG displays attenuated pathogenicity and enhanced immunogenicity, therefore it could be a potential candidate for the next generation of rabies vaccines.
Collapse
Affiliation(s)
- Jie Pei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, PR China
| | - Fei Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, PR China
| | - Qiong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, PR China
| | - Zhaochen Luo
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - YaChun Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, PR China
| | - Juncheng Ruan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, PR China
| | - Yingying Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, PR China
| | - Ming Zhou
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
| | - ZhenFang Fu
- Department of Pathology, University of Georgia, Athens, GA, USA.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Ling Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|