1
|
Reyes-Proaño E, Knerr AJ, Karasev AV. Molecular characterization of birch toti-like virus, a plant-associated member of the new family Orthototiviridae. Arch Virol 2024; 169:140. [PMID: 38850451 DOI: 10.1007/s00705-024-06067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/02/2024] [Indexed: 06/10/2024]
Abstract
A novel totivirus, named "birch toti-like virus" (BTLV), was discovered in European white birch (Betula pendula) plants. The genome of BTLV is 4,967 nucleotides long and contains two overlapping open reading frames (ORFs) coding for the capsid protein (CP) and an RNA-dependent RNA-polymerase (RdRP). The encoded CP and RdRP proteins shared 46.9% and 60.2% amino acid sequence identity, respectively, with those of Panax notoginseng virus B. The presence of a putative slippery heptamer signal 82 nt upstream of the stop codon of ORF1 suggests that a -1 translational frameshifting strategy is involved in the expression of ORF2, like in other totiviruses. Phylogenetic analysis based on the CP and RdRP amino acid sequences placed this virus within a clade of plant-associated totiviruses, with taro-associated virus as its closest relative. Hence, based on its distinct host and the amino acid sequence similarity between BTLV and its relatives, we conclude that birch toti-like virus is a new member of the genus Totivirus.
Collapse
Affiliation(s)
- Edison Reyes-Proaño
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - A Jenny Knerr
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
2
|
Chen M, Xia Y, Wang Q. Identification and molecular characterization of a novel totivirus from Mangifera indica. Arch Virol 2024; 169:58. [PMID: 38424260 DOI: 10.1007/s00705-024-06001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
In this study, we determined the complete genome sequence of a novel totivirus, tentatively named "Mangifera indica totivirus 1" (MiTV1), identified in 'Apple' mango in China. The double-stranded RNA genome of MiTV1 is 4800 base pairs (bp) in length and contains two open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis based on RdRp and CP amino acid sequences showed that MiTV1 is closely related to members of the genus Totivirus in the family Totiviridae. To our knowledge, this is the first report of a totivirus found in Mangifera indica.
Collapse
Affiliation(s)
- Mengyi Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, China
| | - Yujia Xia
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524000, China
- South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qihua Wang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524000, China.
| |
Collapse
|
3
|
Xu Z, Gao Y, Teng K, Ge H, Zhang X, Wu M, Li R, Wu Z, Zheng L. Identification and Genome Characterization of a Novel Virus within the Genus Totivirus from Chinese Bayberry ( Myrica rubra). Viruses 2024; 16:283. [PMID: 38400058 PMCID: PMC10893191 DOI: 10.3390/v16020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Chinese bayberry (Myrica rubra) is an economically significant fruit tree native to eastern Asia and widely planted in south-central China. However, studies about the viruses infecting M. rubra remain largely lacking. In the present study, we employed the metatranscriptomic method to identify viruses in M. rubra leaves exhibiting yellowing and irregular margin symptoms collected in Fuzhou, a city located in China's Fujian province in the year 2022. As a consequence, a novel member of the genus Totivirus was identified and tentatively named "Myrica rubra associated totivirus 1" (MRaTV1). The genome sequencing of MRaTV1 was determined by overlapping reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The two deduced proteins encoded by MRaTV1 have the highest amino acid (aa) sequence identity to the coat protein (CP) and RNA-dependent RNA polymerase (RdRP) of Panax notoginseng virus A (PNVA), a member of the genus Totivirus within the family Totiviridae, at 49.7% and 61.7%, respectively. According to the results of the phylogenetic tree and the species demarcation criteria of the International Committee on Taxonomy of Viruses (ICTV) for the genus Totivirus, MRaTV1 is considered a new member of the genus Totivirus.
Collapse
Affiliation(s)
- Zhongtian Xu
- Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China; (Z.X.); (Y.G.); (K.T.); (H.G.); (X.Z.); (M.W.); (Z.W.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yi’nan Gao
- Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China; (Z.X.); (Y.G.); (K.T.); (H.G.); (X.Z.); (M.W.); (Z.W.)
| | - Kun Teng
- Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China; (Z.X.); (Y.G.); (K.T.); (H.G.); (X.Z.); (M.W.); (Z.W.)
| | - Huoyang Ge
- Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China; (Z.X.); (Y.G.); (K.T.); (H.G.); (X.Z.); (M.W.); (Z.W.)
| | - Xiaoqi Zhang
- Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China; (Z.X.); (Y.G.); (K.T.); (H.G.); (X.Z.); (M.W.); (Z.W.)
| | - Mengjing Wu
- Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China; (Z.X.); (Y.G.); (K.T.); (H.G.); (X.Z.); (M.W.); (Z.W.)
| | - Ruhui Li
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD 20705, USA;
| | - Zujian Wu
- Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China; (Z.X.); (Y.G.); (K.T.); (H.G.); (X.Z.); (M.W.); (Z.W.)
| | - Luping Zheng
- Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China; (Z.X.); (Y.G.); (K.T.); (H.G.); (X.Z.); (M.W.); (Z.W.)
| |
Collapse
|
4
|
Khalifa ME, MacDiarmid RM. Molecular Characterization of Two Totiviruses from the Commensal Yeast Geotrichum candidum. Viruses 2023; 15:2150. [PMID: 38005831 PMCID: PMC10674808 DOI: 10.3390/v15112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Mycoviruses can infect many of the major taxa of fungi including yeasts. Mycoviruses in the yeast fungus Geotrichum candidum are not well studied with only three G. candidum-associated viral species characterized to date, all of which belong to the Totiviridae genus Totivirus. In this study, we report the molecular characteristics of another two totiviruses co-infecting isolate Gc6 of G. candidum. The two totiviruses were tentatively named Geotrichum candidum totivirus 2 isolate Gc6 (GcTV2-Gc6) and Geotrichum candidum totivirus 4 isolate Gc6 (GcTV4-Gc6). Both viruses have the typical genome organization of totiviruses comprising two ORFs encoding capsid protein (CP) and RNA-dependent RNA polymerase (RdRp) at the N and C termini, respectively. The genomes of GcTV2-Gc6 and GcTV4-Gc6 are 4592 and 4530 bp long, respectively. Both viruses contain the-frameshifting elements and their proteins could be expressed as a single fusion protein. GcTV2-Gc6 is closely related to a totivirus isolated from the same host whereas GcTV4-Gc6 is related to insect-associated totiviruses. The phylogenetic analysis indicated that GcTV2-Gc6 and GcTV4-Gc6 belong to two different sister clades, I-A and I-B, respectively. It is interesting that all viruses identified from G. candidum belong to the genus Totivirus; however, this might be due to the lack of research reporting the characterization of mycoviruses from this fungal host. It is possible that the RNA interference (RNAi) mechanism cannot actively suppress totivirus accumulation in G. candidum Gc6.
Collapse
Affiliation(s)
- Mahmoud E. Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt;
| | - Robin M. MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Tan H, Zhao R, Wang H, Huang X. Identification and molecular characterization of a novel member of the genus Totivirus from Areca catechu L. Arch Virol 2023; 168:247. [PMID: 37676322 DOI: 10.1007/s00705-023-05867-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
In previous work, RNA-seq was applied to identify the causal agent of yellow leaf disease (YLD) in areca palm (Areca catechu L.), resulting in the identification of areca palm velarivirus 1 (APV1) associated with YLD. Additionally, RNA-seq revealed a totivirus-like virus in areca palm. This work revealed that the totivirus-like virus is prevalent in asymptomatic areca palms. Therefore, it was tentatively named "areca palm latent totivirus 1" (APLTV1). The complete genome sequence of APLTV1 was determined and found to be 4754 base pairs (bp) in length, containing two ORFs whose encoded proteins share 55% and 69% amino acid (aa) sequence identity with the capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), respectively, of Bursera graveolens-associated totivirus 1 (BgAT1). Phylogenetic analysis based on alignment of the CP and RdRp sequences revealed that APLTV1 clustered with other members of the genus Totivirus, suggesting that APLTV1 represents a novel species of the genus Totivirus, family Totiviridae.
Collapse
Affiliation(s)
- Hang Tan
- College of Tropical Agriculture and Forest, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Ruibai Zhao
- College of Tropical Agriculture and Forest, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Hongxing Wang
- College of Tropical Agriculture and Forest, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Xi Huang
- College of Tropical Agriculture and Forest, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China.
| |
Collapse
|
6
|
A Capsid Protein Fragment of a Fusagra-like Virus Found in Carica papaya Latex Interacts with the 50S Ribosomal Protein L17. Viruses 2023; 15:v15020541. [PMID: 36851755 PMCID: PMC9961563 DOI: 10.3390/v15020541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Papaya sticky disease is caused by the association of a fusagra-like and an umbra-like virus, named papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), respectively. Both viral genomes are encapsidated in particles formed by the PMeV ORF1 product, which has the potential to encode a protein with 1563 amino acids (aa). However, the structural components of the viral capsid are unknown. To characterize the structural proteins of PMeV and PMeV2, virions were purified from Carica papaya latex. SDS-PAGE analysis of purified virus revealed two major proteins of ~40 kDa and ~55 kDa. Amino-terminal sequencing of the ~55 kDa protein and LC-MS/MS of purified virions indicated that this protein starts at aa 263 of the deduced ORF1 product as a result of either degradation or proteolytic processing. A yeast two-hybrid assay was used to identify Arabidopsis proteins interacting with two PMeV ORF1 product fragments (aa 321-670 and 961-1200). The 50S ribosomal protein L17 (AtRPL17) was identified as potentially associated with modulated translation-related proteins. In plant cells, AtRPL17 co-localized and interacted with the PMeV ORF1 fragments. These findings support the hypothesis that the interaction between PMeV/PMeV2 structural proteins and RPL17 is important for virus-host interactions.
Collapse
|
7
|
Li X, Li Y, Hu W, Li Y, Li Y, Chen S, Wang J. Simultaneous multiplex RT-PCR detection of four viruses associated with maize lethal necrosis disease. J Virol Methods 2021; 298:114286. [PMID: 34520808 DOI: 10.1016/j.jviromet.2021.114286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022]
Abstract
Maize lethal necrosis disease (MLND) is a serious disease of worldwide importance. It is caused by the co-infection of maize with maize chlorotic mottle virus (MCMV) and a potyvirus, such as sugarcane mosaic virus (SCMV), that acts synergistically to produce more severe symptoms and production losses. More recently, maize yellow mosaic virus (MaYMV) and maize-associated totivirus (MATV) were found to co-infect with MCMV and SCMV in maize plants. To facilitate the detection of these viruses in co-infected maize, a multiplex RT-PCR assay was developed in this study. The assay used five specific primer pairs and simultaneously amplified these four viruses as well as the elongation factor 1α (EF 1α) gene use as internal control in one tube. The concentration of the primers, annealing temperature, annealing time, extension time and amplification cycles were optimized for the multiplex RT-PCR. The detection limit of the assay was up to 100 pg of total cDNA template. This multiplex RT-PCR assay was shown to be a sensitive and effective tool for the screening of field samples for the presence of these viruses in co-infected maize.
Collapse
Affiliation(s)
- Xiaoqin Li
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Yu Li
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Wenli Hu
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Yingjuan Li
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Yan Li
- Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
| | - Suiyun Chen
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China.
| | - Jianguang Wang
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China.
| |
Collapse
|
8
|
Asiimwe T, Stewart LR, Willie K, Massawe DP, Kamatenesi J, Redinbaugh MG. Maize lethal necrosis viruses and other maize viruses in Rwanda. PLANT PATHOLOGY 2020; 69:585-597. [PMID: 35874461 PMCID: PMC9291312 DOI: 10.1111/ppa.13134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/04/2019] [Indexed: 05/17/2023]
Abstract
Maize lethal necrosis (MLN) is emergent in East Africa, first reported in 2011 in Kenya, and is devastating to maize production in the region. MLN is caused by coinfection of maize with the emergent maize chlorotic mottle virus (MCMV) and any of several maize-infecting potyviruses endemic in East Africa and worldwide. Here, we examined the distribution of MCMV and sugarcane mosaic virus (SCMV), the major viruses contributing to MLN in Rwanda. These and other viruses in maize across Rwanda were further characterized by deep sequencing. When identified, MCMV had high titres and minimal sequence variability, whereas SCMV showed moderate titres and high sequence variability. Deep sequencing also identified maize streak virus and other maize-associated viruses, including a previously described polerovirus, maize yellow mosaic virus, and barley yellow dwarf virus, diverse maize-associated totiviruses, maize-associated pteridovirus, Zea mays chrysovirus 1, and a maize-associated betaflexivirus. Detection of each virus was confirmed in maize samples by reverse transcription polymerase chain reaction.
Collapse
Affiliation(s)
| | - Lucy R. Stewart
- Corn, Soybean and Wheat Quality Research UnitUSDA‐ARSWoosterOHUSA
- Department of Plant PathologyThe Ohio State UniversityWoosterOHUSA
| | - Kristen Willie
- Corn, Soybean and Wheat Quality Research UnitUSDA‐ARSWoosterOHUSA
| | | | | | | |
Collapse
|
9
|
Diversity and distribution of Maize-associated totivirus strains from Tanzania. Virus Genes 2019; 55:429-432. [PMID: 30790190 DOI: 10.1007/s11262-019-01650-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
Abstract
Typically associated with fungal species, members of the viral family Totiviridae have recently been shown to be associated with plants, including important crop species, such as Carica papaya (papaya) and Zea mays (maize). Maize-associated totivirus (MATV) was first described in China and more recently in Ecuador, where it has been found to co-occur with other viruses known to elicit maize lethal necrosis disease (MLND). In a survey for maize-associated viruses, 35 samples were selected for Illumina HiSeq sequencing, from the Tanzanian maize producing regions of Mara, Arusha, Manyara, Kilimanjaro, Morogoro and Pwani. Libraries were prepared using an RNA-tag-seq methodology. Taxonomic classification of the resulting datasets showed that 6 of the 35 samples from the regions of Arusha, Kilimanjaro, Morogoro and Mara, contained reads that were assigned to MATV reference sequences. This was confirmed with PCR and Sanger sequencing. Read assembly of the six MATV-associated datasets yielded partial MATV genomes, two of which were selected for further characterization, using RACE. This yielded two full-length MATV genomes, one of which is divergent from other available MATV genomes.
Collapse
|
10
|
Abstract
Maize lethal necrosis (MLN) is a disease of maize caused by coinfection of maize with maize chlorotic mottle virus (MCMV) and one of several viruses from the Potyviridae, such as sugarcane mosaic virus, maize dwarf mosaic virus, Johnsongrass mosaic virus or wheat streak mosaic virus. The coinfecting viruses act synergistically to result in frequent plant death or severely reduce or negligible yield. Over the past eight years, MLN has emerged in sub-Saharan East Africa, Southeast Asia, and South America, with large impacts on smallholder farmers. Factors associated with MLN emergence include multiple maize crops per year, the presence of maize thrips ( Frankliniella williamsi), and highly susceptible maize crops. Soil and seed transmission of MCMV may also play significant roles in development and perpetuation of MLN epidemics. Containment and control of MLN will likely require a multipronged approach, and more research is needed to identify and develop the best measures.
Collapse
Affiliation(s)
- Margaret G Redinbaugh
- Department of Plant Pathology, Ohio State University, Wooster, Ohio 44691, USA; .,United States Department of Agriculture, Agricultural Research Service, Wooster, Ohio 44691, USA;
| | - Lucy R Stewart
- Department of Plant Pathology, Ohio State University, Wooster, Ohio 44691, USA; .,United States Department of Agriculture, Agricultural Research Service, Wooster, Ohio 44691, USA;
| |
Collapse
|
11
|
Alvarez-Quinto RA, Cornejo-Franco JF, Quito-Avila DF. Characterization of a not so new potexvirus from babaco (Vasconcellea x heilbornii). PLoS One 2017; 12:e0189519. [PMID: 29244846 PMCID: PMC5731686 DOI: 10.1371/journal.pone.0189519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
A new member of the genus Potexvirus was fully sequenced and characterized. The virus was isolated from babaco (Vasconcellea x heilbornii), a natural hybrid native to Ecuador. The virus contains a 6,692 nt long genome organized in five open reading frames in an arrangement typical of other potexviruses. Sequence comparisons revealed close relatedness with Papaya mosaic virus (PapMV), Alternathera mosaic virus (AltMV) and Senna mosaic virus (SenMV), exhibiting nucleotide identities up to 67% for the polymerase (Pol) and 68% for the coat protein (CP), with deduced amino acid identities of 70% and 72% for the Pol and CP, respectively. The presence of an AlkB domain, in the polymerase region, was observed. Terminal nucleotide sequences were conserved across potexviruses with characteristic motifs and predicted secondary structures at the 3' UTR. Although serologically undistinguishable from PapMV and AltMV, the new virus showed differences in host range and symptom induction. The name babaco mosaic virus is proposed for this newly characterized Potexvirus. The complete genome sequence of the new virus has been deposited in NCBI GenBank under accession number MF978248.
Collapse
Affiliation(s)
- Robert A. Alvarez-Quinto
- Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Juan F. Cornejo-Franco
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Diego F. Quito-Avila
- Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| |
Collapse
|