1
|
Yang C, Chu B, Anane RF, He J, Wu D, Yang Y, Li X, Liu Z, Wang J, Shang J, Zhao M. Complete genome sequence of Valeriana jatamansi cryptic virus 1: a novel member of the genus Alphapartitivirus infecting Valeriana jatamansi Jones. Arch Virol 2024; 170:2. [PMID: 39636458 DOI: 10.1007/s00705-024-06194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024]
Abstract
A new double-stranded RNA (dsRNA) virus, tentatively named "Valeriana jatamansi cryptic virus 1" (VJCV1, GenBank accession nos. PP482519 and PP482520), was isolated from diseased Valeriana jatamansi Jones plants exhibiting vein-banding in Yunnan. Its complete genome sequence was determined using metatranscriptomic and Sanger sequencing. The genome of VJCV1 consists of two dsRNA of different size, namely dsRNA1 (2,026 bp) and dsRNA2 (1,754 bp), which are predicted to encode an RNA-dependent RNA polymerase (RdRp, 616 aa) with molecular weight of 72.6 kDa and coat protein (CP, 491 aa) with molecular weight of 55.8 kDa, respectively. The non-coding region of dsRNA in VJCV1 is predicted to have a stem-loop structure and a poly(A) tail that are unique to the members of the genus Alphapartitivirus. Multiple sequence alignments showed that the RdRp and CP of VJCV1 shared the highest amino acid sequence identity (86.2% and 56.1%, respectively) with red clover cryptic virus 1 (RCCV1). These values are below the threshold for creating new species within the genus Alphapartitivirus. Phylogenetic analysis based on RdRp and CP sequences showed that VJCV1 clustered independently from members of the genus Alphapartitivirus, with RCCV1 being the closest relative. It is therefore suggested that VJCV1 should be considered a member of a new species of the genus Alphapartitivirus in the family Partitiviridae. This is the first report of a member of the genus Alphapartitivirus infecting a plant of the genus Valeriana.
Collapse
Affiliation(s)
- Chaorong Yang
- Key Laboratory for Agricultural Bioaffiliationersity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
| | - Bifan Chu
- Qianxinan Prefecture Company of Guizhou Tobacco Company, NO. 60, Ruijin South Road, Jushan Street, Xingyi City, Guizhou, Qianxinan Prefecture, 562400, China
| | - Rex Frimpong Anane
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Jianqin He
- Key Laboratory for Agricultural Bioaffiliationersity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
| | - Dexi Wu
- Key Laboratory for Agricultural Bioaffiliationersity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
| | - Yonghong Yang
- Key Laboratory for Agricultural Bioaffiliationersity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
| | - Xuehua Li
- Key Laboratory for Agricultural Bioaffiliationersity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
| | - Zhongan Liu
- Key Laboratory for Agricultural Bioaffiliationersity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
| | - Jianhua Wang
- Key Laboratory for Agricultural Bioaffiliationersity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
| | - Jinyan Shang
- Key Laboratory for Agricultural Bioaffiliationersity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China
| | - Mingfu Zhao
- Key Laboratory for Agricultural Bioaffiliationersity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China.
- College of Plant Protection, Yunnan Agricultural University, NO. 95, Jinhei Road, Panlong District, Kunming, Yunnan, 650201, China.
| |
Collapse
|
2
|
Zhang F, Su X, Zhang S, Wang M, Wang T, Zheng X, Wu K, Zheng K, Zhang Z. Genomic characterization and seed transmission of a novel unclassified partitivirus infecting Polygonatum kingianum Coll. et Hemsl. Heliyon 2023; 9:e16719. [PMID: 37303532 PMCID: PMC10248264 DOI: 10.1016/j.heliyon.2023.e16719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
This study identified a novel virus in the family Partitiviridae infecting Polygonatum kingianum Coll. et Hemsl, which is tentatively named polygonatum kingianum cryptic virus 1 (PKCV1). PKCV1 genome has two RNA segments: dsRNA1 (1926 bp) has an open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) of 581 amino acids (aa), and dsRNA2 (1721 bp) has an ORF encoding a capsid protein (CP) of 495 aa. The RdRp of PKCV1 shares 20.70-82.50% aa identity with known partitiviruses, and the CP of PKCV1 shares 10.70-70.80% aa identity with known partitiviruses. Moreover, PKCV1 phylogenetically clustered with unclassified members of the Partitiviridae family. Additionally, PKCV1 is common in P. kingianum planting regions and has a high infection rate in P. kingianum seeds.
Collapse
Affiliation(s)
- Fan Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
- School of Agriculture, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
| | - Shaozhi Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
| | - Maosen Wang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
- School of Agriculture, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Tiantian Wang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
| | - Xue Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
| | - Kuo Wu
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, 2238# Beijing Rd, Panlong District, Kunming 650205, Yunnan, PR China
| |
Collapse
|
3
|
Costa LC, Hu X, Malapi-Wight M, O'Connell M, Hendrickson LM, Turner RS, McFarland C, Foster J, Hurtado-Gonzales OP. Genomic characterization of silvergrass cryptic virus 1, a novel partitivirus infecting Miscanthus sinensis. Arch Virol 2021; 167:261-265. [PMID: 34757504 DOI: 10.1007/s00705-021-05294-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
In the present study we report the identification of a novel partitivirus recovered from Miscanthus sinensis, for which the provisional name "silvergrass cryptic virus 1" (SgCV-1) is proposed. High-throughput sequencing (HTS) and rapid amplification of cDNA ends (RACE) allowed the assembly of the complete sequence of each double-stranded RNA genome segment of this novel virus. The largest dsRNA segment, dsRNA1 (1699 bp), was predicted to encode a viral RNA-dependent RNA polymerase protein (RdRp) with 478 aa, and dsRNA2 (1490 bp) and dsRNA3 (1508 bp) were predicted to encode putative capsid proteins (CPs) with 347 and 348 aa, respectively. SgCV-1 has the highest amino acid sequence identity (≤ 70.80% in RdPp and ≤ 34.5% in CPs) to members of the genus Deltapartitivirus, family Partitiviridae, especially to unclassified viruses related to members of this genus. Its genome segment and protein lengths are also within the range of those of deltapartitiviruses. Moreover, phylogenetic analysis based on RdRp amino acid sequences also showed clustering of this novel virus with the related unclassified deltapartitiviruses. An RT-PCR survey of 94 imported M. sinensis samples held in quarantine identified seven additional samples carrying SgCV-1. This new virus fulfils all ICTV criteria to be considered a new member of the genus Deltapartitivirus.
Collapse
Affiliation(s)
- Larissa C Costa
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | - Xiaojun Hu
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | - Martha Malapi-Wight
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA.,USDA-APHIS, Biotechnology Regulatory Services, Biotechnology Risk Analysis Program, Riverdale, MD, USA
| | - Mary O'Connell
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | - Leticia M Hendrickson
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | - Roy S Turner
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | | | - Joseph Foster
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | - Oscar P Hurtado-Gonzales
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA.
| |
Collapse
|
4
|
Samarfard S, McTaggart AR, Sharman M, Bejerman NE, Dietzgen RG. Viromes of Ten Alfalfa Plants in Australia Reveal Diverse Known Viruses and a Novel RNA Virus. Pathogens 2020; 9:pathogens9030214. [PMID: 32183134 PMCID: PMC7157637 DOI: 10.3390/pathogens9030214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Alfalfa plants in the field can display a range of virus-like symptoms, especially when grown over many years for seed production. Most known alfalfa viruses have RNA genomes, some of which can be detected using diagnostic assays, but many viruses of alfalfa are not well characterized. This study aims to identify the RNA and DNA virus complexes associated with alfalfa plants in Australia. To maximize the detection of RNA viruses, we purified double-stranded RNA (dsRNA) for high throughput sequencing and characterized the viromes of ten alfalfa samples that showed diverse virus-like symptoms. Using Illumina sequencing of tagged cDNA libraries from immune-captured dsRNA, we identified sequences of the single-stranded RNA viruses, alfalfa mosaic virus (AMV), bean leafroll virus, a new emaravirus tentatively named alfalfa ringspot-associated virus, and persistent dsRNA viruses belonging to the families Amalgaviridae and Partitiviridae. Furthermore, rolling circle amplification and restriction enzyme digestion revealed the complete genome of chickpea chlorosis Australia virus, a mastrevirus (family Geminiviridae) previously reported only from chickpea and French bean that was 97% identical to the chickpea isolate. The sequence data also enabled the assembly of the first complete genome (RNAs 1–3) of an Australian AMV isolate from alfalfa.
Collapse
Affiliation(s)
- Samira Samarfard
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Alistair R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia;
| | - Murray Sharman
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia;
| | - Nicolás E. Bejerman
- Instituto de Patología Vegetal–Centro de Investigaciones Agropecuarias–Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba 5020, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola, Córdoba 5020, Argentina
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia;
- Correspondence: ; Tel.: +61-7-334-66503
| |
Collapse
|
5
|
Detection and Characterization of Cucumis melo Cryptic Virus, Cucumis melo Amalgavirus 1, and Melon Necrotic Spot Virus in Cucumis melo. Viruses 2019; 11:v11010081. [PMID: 30669373 PMCID: PMC6356274 DOI: 10.3390/v11010081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/06/2019] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Three RNA viruses—Cucumis melo cryptic virus (CmCV), Cucumis melo amalgavirus 1 (CmAV1), and melon necrotic spot virus (MNSV)—were identified from a melon (Cucumis melo) transcriptome dataset. CmCV has two dsRNA genome segments; dsRNA-1 is 1592 bp in size, containing a conserved RNA-dependent RNA polymerase (RdRp), and dsRNA-2 is 1715 bp in size, and encodes a coat protein (CP). The sequence alignment and phylogenetic analyses of the CmCV RdRp and CP indicated CmCV clusters with approved or putative deltapartitiviruses in well-supported monophyletic clade. The RdRp of CmCV shared an amino acid sequence identity of 60.7% with the closest RdRp of beet cryptic virus 3, and is <57% identical to other partitiviruses. CmAV1 is a nonsegmented dsRNA virus with a genome of 3424 bp, including two partially overlapping open reading frames (ORFs) encoding a putative CP and RdRp. The sequence alignment and phylogenetic analyses of CmAV1 RdRp revealed that it belongs to the genus Amalgavirus in the family Amalgaviridae. The RdRp of CmAV1 shares 57.7% of its amino acid sequence identity with the most closely related RdRp of Phalaenopsis equestris amalgavirus 1, and is <47% identical to the other reported amalgaviruses. These analyses suggest that CmCV and CmAV1 are novel species in the genera Amalgavirus and Deltapartitivirus, respectively. These findings enrich our understanding of new plant dsRNA virus species.
Collapse
|
6
|
Molecular characterization of a new gammapartitivirus isolated from the citrus-pathogenic fungus Penicillium digitatum. Arch Virol 2018; 163:3185-3189. [PMID: 30076474 DOI: 10.1007/s00705-018-3951-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
To date, partitiviruses, including gammapartitiviruses, have been extensively studied in various fungal hosts but have not been reported in Penicillium digitatum (also called green mold, the pathogenic fungus infecting citrus). In the present work, we isolated and molecularly characterized a double-stranded RNA (dsRNA) partitivirus from citrus green mold, which we have named "Penicillium digitatum gammapartitivirus 1" (PdGV1). The bisegmented genome of PdGV1 contains two dsRNA segments (dsRNA1 and dsRNA2) with a length of 1795 bp and 1622 bp, respectively. Each of the two genomic dsRNAs contains a single open reading frame encoding a putative RNA-dependent RNA polymerase (RdRp) and a coat protein (CP), respectively. Phylogenetic analysis based on RdRp and CP sequences showed that PdGV1 clustered with mycoviruses belonging to the genus Gammapartitivirus, family Partitiviridae, e.g., Penicillium stoloniferum virus S. The 5'- and 3'-untranslated regions (UTRs) of the PdGV1 genomic dsRNAs both contained unique conserved RNA motifs that have never been found in any other partitivirus. This is the first report of a new gammapartitivirus that infects the citrus-pathogenic fungus P. digitatum.
Collapse
|