1
|
Wang Z, Xiao J, Liu H, Zheng Z, Zhang Y, Liu Y, Li P. Molecular characterization of a novel mitovirus from the edible fungus Pleurotus pulmonarius. Arch Virol 2025; 170:132. [PMID: 40379999 DOI: 10.1007/s00705-025-06310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/10/2025] [Indexed: 05/19/2025]
Abstract
In this study, we identified a novel mitovirus, designated as "Pleurotus pulmonarius duamitovirus 1" (PpDMV1), from the edible fungus Pleurotus pulmonarius. Genome sequencing revealed a 2,622-nucleotide (nt) genome containing a single 2,001-nt open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp). Full-length genome sequence comparisons using BLASTx demonstrated the closest sequence similarity (56.68% identity) to Erysiphe necator associated mitovirus 15 (EnMV15). Phylogenetic analysis positioned PpDMV1 within the genus Duamitovirus (family Mitoviridae). To our knowledge, this is the first report of a mitovirus infection in P. pulmonarius.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Junbo Xiao
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Hanzhao Liu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Ziru Zheng
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yifei Zhang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yingying Liu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Pengfei Li
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
- Engineering Research Center of Biological Control, Ministry of Education, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Zhang Y, Wang N, Li J, Chen B, Kang Z, Song P, Zheng W. Complete genome sequence of a novel mitovirus identified in the phytopathogenic fungus Puccinia triticina. Arch Virol 2025; 170:90. [PMID: 40140110 DOI: 10.1007/s00705-025-06272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025]
Abstract
Wheat leaf rust is caused by the obligate biotrophic fungus Puccinia triticina f. sp. tritici, which seriously affects wheat production. In this study, a novel mitovirus was identified in Puccinia triticina strain HN-1 and designated as "Puccinia triticina mitovirus 1" (PtMV1). The genome of PtMV1 consists of a single RNA molecule with a length of 2,380 nt and an A + U content of 54.7% that contains a single open reading frame (ORF). The ORF is predicted to encode a putative RNA-dependent RNA polymerase (RdRp) of 653 amino acids with a molecular mass of 74.77 kDa, containing six conserved motifs. The RdRp amino acid sequence of PtMV1 has a high degree of sequence similarity to the RdRps of unuamitoviruses. Phylogenetic analysis indicated that PtMV1 is a new member of the genus Unuamitovirus within the family Mitoviridae. To our knowledge, this is the first report of a fungal virus in Puccinia triticina.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Nuoheng Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Jinyang Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Bingtao Chen
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pengyu Song
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
3
|
Wu C, Zhou S, Xie C, Chen D, Zheng L. Molecular characterization of a novel deltaflexivirus from the plant-pathogenic fungus Neopestalotiopsis nebuloides strain N-7. Arch Virol 2025; 170:50. [PMID: 39922962 DOI: 10.1007/s00705-025-06219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/21/2024] [Indexed: 02/10/2025]
Abstract
The full genome sequence of a positive-sense (+) single-stranded (ss) RNA virus, which we have named "Neopestalotiopsis nebuloides deltaflexivirus 1" (NnDFV1), from Neopestalotiopsis nebuloides strain N-7 was sequenced and analyzed. The NnDFV1 genome is 7,719 nucleotides in length with a GC content of 49%, excluding the poly(A) tail, and contains a large open reading frame (ORF1) and three smaller ORFs (2-4). ORF1 encodes a replication-associated polyprotein (RP) consisting of three conserved domains: viral methyltransferase (Mtr), viral helicase (Hel), and RNA-dependent RNA polymerase (RdRp), whereas ORFs 2-4 encode three hypothetical proteins (18-20 kDa). Phylogenetic analysis showed that NnDFV1 formed a distinct clade together with Pestalotiopsis deltaflexivirus 1 (PDFV1), which is a new member of the genus Deltaflexivirus within the family Deltaflexiviridae. This is the first report of a novel deltaflexivirus found in the phytopathogenic fungus Neopestalotiopsis nebuloides.
Collapse
Affiliation(s)
- Caiming Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Siyu Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Changping Xie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Daipeng Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China.
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China.
| | - Li Zheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China.
| |
Collapse
|
4
|
Hough B, Wingfield B, Read D. Identification and characterization of mycoviruses in transcriptomes from the fungal family ceratocystidaceae. Virus Genes 2024; 60:696-710. [PMID: 39378002 PMCID: PMC11568016 DOI: 10.1007/s11262-024-02112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Mycoviruses pervade the fungal kingdom, yet their diversity within various fungal families and genera remains largely unexplored. In this study, 10 publicly available fungal transcriptomes from Ceratocystidaceae were analyzed for the presence of mycoviruses. Despite mycovirus associations being known in only four members of this family, our investigation unveiled the discovery of six novel mycoviruses. The majority of these mycoviruses are composed of positive sense single stranded RNA and are putatively assigned to the viral family Mitoviridae (with tentative classification into the genera Unuamitovirus and Duamitovirus). The double stranded RNA viruses, however, were associated with the family Totiviridae (with tentative classification into the genus Victorivirus). This study also revealed the discovery of an identical unuamitovirus in the fungal species Thielaviopsis ethacetica and Thielaviopsis paradoxa. This discovery was notable as these fungal isolates originated from distinct geographical locations, highlighting potential implications for the transmission of this mitovirus. Moreover, this investigation significantly expands the known host range for mycoviruses in this family, marking the initial identification of mycoviruses within Ceratocystis platani, Thielaviopsis paradoxa, Thielaviopsis ethacetica, and Huntiella omanensis. Future research should focus on determining the effects that these mycoviruses might have on their fungal hosts.
Collapse
Affiliation(s)
- Bianca Hough
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| | - David Read
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Hua H, Zhang X, Yao Y, Wu X. Complete genome sequence of a novel mitovirus identified in the phytopathogenic fungus Fusarium oxysporum f. sp. melonis strain T-SD3. Arch Virol 2024; 169:126. [PMID: 38753067 DOI: 10.1007/s00705-024-06042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
A novel mitovirus was identified in Fusarium oxysporum f. sp. melonis strain T-SD3 and designated as "Fusarium oxysporum mitovirus 3" (FoMV3). The virus was isolated from diseased muskmelon plants with the typical symptom of fusarium wilt. The complete genome of FoMV3 is 2269 nt in length with a predicted AU content of 61.40% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a polypeptide of 679 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain with a molecular mass of 77.39 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5'-untranslated region (UTR) and 3'-UTR of FoMV3 were predicted to fold into stem-loop structures. BLASTp analysis revealed that the RdRp of FoMV3 shared the highest aa sequence identity (83.85%) with that of Fusarium asiaticum mitovirus 5 (FaMV5, a member of the family Mitoviridae) infecting F. asiaticum, the causal agent of wheat fusarium head blight. Phylogenetic analysis further suggested that FoMV3 is a new member of the genus Unuamitovirus within the family Mitoviridae. This is the first report of a new mitovirus associated with F. oxysporum f. sp. melonis.
Collapse
Affiliation(s)
- Huihui Hua
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Xinyi Zhang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Yilin Yao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
6
|
Contreras-Soto MB, Tovar-Pedraza JM. Viruses of plant-pathogenic fungi: a promising biocontrol strategy for Sclerotinia sclerotiorum. Arch Microbiol 2023; 206:38. [PMID: 38142438 DOI: 10.1007/s00203-023-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Plant pathogenic fungi pose a significant and ongoing threat to agriculture and food security, causing economic losses and significantly reducing crop yields. Effectively managing these fungal diseases is crucial for sustaining agricultural productivity, and in this context, mycoviruses have emerged as a promising biocontrol option. These viruses alter the physiology of their fungal hosts and their interactions with the host plants. This review encompasses the extensive diversity of reported mycoviruses, including their taxonomic classification and range of fungal hosts. We highlight representative examples of mycoviruses that affect economically significant plant-pathogenic fungi and their distinctive characteristics, with a particular emphasis on mycoviruses impacting Sclerotinia sclerotiorum. These mycoviruses exhibit significant potential for biocontrol, supported by their specificity, efficacy, and environmental safety. This positions mycoviruses as valuable tools in crop protection against diseases caused by this pathogen, maintaining their study and application as promising research areas in agricultural biotechnology. The remarkable diversity of mycoviruses, coupled with their ability to infect a broad range of plant-pathogenic fungi, inspires optimism, and suggests that these viruses have the potential to serve as an effective management strategy against major fungi-causing plant diseases worldwide.
Collapse
Affiliation(s)
- María Belia Contreras-Soto
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
7
|
Lopez-Jimenez J, Herrera J, Alzate JF. Expanding the knowledge frontier of mitoviruses in Cannabis sativa. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105523. [PMID: 37940011 DOI: 10.1016/j.meegid.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Mitoviruses were initially known for their presence in the mitochondria of fungi and were considered exclusive to these organisms. However, recent studies have shown that they are also present in a large number of plant species. Despite the potential impact that mitoviruses might have on the mitochondria of plant cells, there is a lack of information about these ancient RNA viruses, especially within the Cannabaceae family. Cannabis sativa has been in the spotlight in recent years due to the growing industrial applications of plant derivatives, such as fiber and secondary metabolites. Given the importance of Cannabis in today's agriculture, our study aimed to expand the knowledge frontier of Mitoviruses in C. sativa by increasing the number of reference genomes of CasaMV1 available in public databases and representing a larger number of crops in countries where its industrial-scale growth is legalized. To achieve this goal, we used transcriptomics to sequence the first mitoviral genomes of Colombian crops and analyzed RNA-seq datasets available in the SRA databank. Additionally, the evolutionary analysis performed using the mitovirus genomes revealed two main lineages of CasaMV1, termed CasaMV1_L1 and CasaMV1_L2. These mitoviral lineages showed strong clustering based on the geographic location of the crops and differential expression intensities.
Collapse
Affiliation(s)
- Juliana Lopez-Jimenez
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Jorge Herrera
- Fábrica de Plantas y Semillas de Antioquia S.A.S. - FASPLAN, El Carmen de Viboral, Antioquia, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia; Fábrica de Plantas y Semillas de Antioquia S.A.S. - FASPLAN, El Carmen de Viboral, Antioquia, Colombia; Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
8
|
Zhang Y, Guo H, Zhou S, Chen D, Xu G, Kang Z, Zheng L. A Novel Mitovirus PsMV2 Facilitates the Virulence of Wheat Stripe Rust Fungus. Viruses 2023; 15:1265. [PMID: 37376565 DOI: 10.3390/v15061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Wheat stripe rust, caused by the obligate biotrophic fungus Puccinia striiformis f. sp. tritici (Pst), seriously affects wheat production. Here, we report the complete genome sequence and biological characterization of a new mitovirus from P. striiformis strain GS-1, which was designated as "Puccinia striiformis mitovirus 2" (PsMV2). Genome sequence analysis showed that PsMV2 is 2658 nt in length with an AU-rich of 52.3% and comprises a single ORF of 2348 nt encoding an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis indicated that PsMV2 is a new member of the genus Unuamitovirus within the family Mitoviridae. In addition, PsMV2 multiplied highly during Pst infection and it suppresses programmed cell death (PCD) triggered by Bax. Silencing of PsMV2 in Pst by barley stripe mosaic virus (BSMV)-mediated Host Induced Gene Silencing (HIGS) reduced fungal growth and decreased pathogenicity of Pst. These results indicate PsMV2 promotes host pathogenicity in Pst. Interestingly, PsMV2 was detected among a wide range of field isolates of Pst and may have coevolved with Pst in earlier times. Taken together, our results characterized a novel mitovirus PsMV2 in wheat stripe rust fungus, which promotes the virulence of its fungal host and wide distribution in Pst which may offer new strategies for disease control.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Hualong Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Siyu Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Daipeng Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Gang Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Li Zheng
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| |
Collapse
|
9
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
10
|
Zhang Y, Liang X, Zhao M, Qi T, Guo H, Zhao J, Zhao J, Zhan G, Kang Z, Zheng L. A novel ambigrammatic mycovirus, PsV5, works hand in glove with wheat stripe rust fungus to facilitate infection. PLANT COMMUNICATIONS 2023; 4:100505. [PMID: 36527233 DOI: 10.1016/j.xplc.2022.100505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 05/11/2023]
Abstract
Here we describe a novel narnavirus, Puccinia striiformis virus 5 (PsV5), from the devastating wheat stripe rust fungus P. striiformis f. sp. tritici (Pst). The genome of PsV5 contains two predicted open reading frames (ORFs) that largely overlap on reverse strands: an RNA-dependent RNA polymerase (RdRp) and a reverse-frame ORF (rORF) with unknown function. Protein translations of both ORFs were demonstrated by immune technology. Transgenic wheat lines overexpressing PsV5 (RdRp-rORF), RdRp ORF, or rORF were more susceptible to Pst infection, whereas PsV5-RNA interference (RNAi) lines were more resistant. Overexpression of PsV5 (RdRp-rORF), RdRp ORF, or rORF in Fusarium graminearum also boosted fungal virulence. We thus report a novel ambigrammatic mycovirus that promotes the virulence of its fungal host. The results are a significant addition to our understanding of virosphere diversity and offer insights for sustainable wheat rust disease control.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengxin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tuo Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Hualong Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Li Zheng
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
11
|
Zhang X, Li S, Ma Z, Cai Q, Zhou T, Wu X. Complete genome sequence of a novel mitovirus isolated from the fungus Fusarium equiseti causing potato dry rot. Arch Virol 2022; 167:2777-2781. [PMID: 36178543 DOI: 10.1007/s00705-022-05578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/14/2022] [Indexed: 12/14/2022]
Abstract
In this study, a novel mitovirus was isolated from the fungus Fusarium equiseti causing potato dry rot and tentatively designated as "Fusarium equiseti mitovirus 1" (FeMV1). The full-length genome sequence of FeMV1 consists of 2,459 nucleotides with a predicted A + U content of 69.5%. Using the mold mitochondrial genetic code, an open reading frame (ORF) of 725 amino acids (aa) was predicted to encode an RNA-dependent RNA polymerase (RdRp). The RdRp protein contains six conserved motifs, with the highly conserved GDD in motif IV, and the 5'-untranslated region (UTR) and 3'-UTR of FeMV1 have the potential to fold into stem-loop secondary structures and a panhandle structure, both of which are typical characteristics of members of the family Mitoviridae. Results of a BLASTp search showed that the RdRp aa sequence of FeMV1 shared the highest sequence similarity with that of Fusarium poae mitovirus 2 (FpMV2) (76.84% identity, E-value = 0.0). Phylogenetic analysis based on the complete aa sequence of RdRp further suggested that FeMV1 is a new member of the family Mitoviridae. This is the first report of the complete genome sequence analysis of a mitovirus associated with F. equiseti.
Collapse
Affiliation(s)
- Xiaofang Zhang
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Zhihao Ma
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Chen Z, Chen L, Anane RF, Wang Z, Gao L, Li S, Wen G, Yu D, Zhao M. Complete genome sequence of a novel mitovirus detected in Paris polyphylla var. yunnanensis. Arch Virol 2022; 167:645-650. [PMID: 35037104 DOI: 10.1007/s00705-021-05339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Paris mitovirus 1 (ParMV1) is a positive-sense RNA virus that was detected in diseased Paris polyphylla var. yunnanensis plants in Wenshan, Yunnan. The complete genome sequence of ParMV1 is 2,751 nucleotides in length, and the genome structure is typical of mitoviruses. The ParMV1 genome has a single open reading frame (ORF; nt 358-2,637) that encodes an RNA-dependent RNA polymerase (RdRp) with a predicted molecular mass of 86.42 kDa. ParMV1 contains six conserved motifs (Ι-VΙ) that are unique to mitoviruses. The 5' and 3' termini of the genome are predicted to have a stable secondary structure, with the reverse complementary sequence forming a panhandle structure. Comparative genome analysis revealed that the RdRp of ParMV1 shares 23.1-40.6% amino acid (aa) and 32.3-45.7% nucleotide (nt) sequence identity with those of other mitoviruses. Phylogenetic analysis based on RdRp aa sequences showed that ParMV1 clusters with mitoviruses and hence should be considered a new member of the genus Mitovirus in the family Mitoviridae. This is the first report of a novel mitovirus infecting Paris polyphylla var. yunnanensis.
Collapse
Affiliation(s)
- Zeli Chen
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Lu Chen
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Rex Frimpong Anane
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.,State Key Laboratory for Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Zhe Wang
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Like Gao
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Shangyun Li
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Guosong Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Daihong Yu
- Plant Protection and Quarantine Station of Yuanjiang County, Yuxi, 653300, Yunnan, China
| | - Mingfu Zhao
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China. .,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China.
| |
Collapse
|
13
|
Wang H, Liu H, Lu X, Wang Y, Zhou Q. A novel mitovirus isolated from the phytopathogenic fungus Botryosphaeria dothidea. Arch Virol 2021; 166:1507-1511. [PMID: 33683472 DOI: 10.1007/s00705-021-05023-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/18/2021] [Indexed: 12/01/2022]
Abstract
In this study, we isolated and determined the complete genome sequence of a novel mitovirus, "Botryosphaeria dothidea mitovirus 2" (BdMV2), from the phytopathogenic fungus Botryosphaeria dothidea isolate DT-5. BdMV2 has a genome 2,482 nt in length with an A+U content of 67%. The genome of BdMV2 contains a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) of 717 amino acids (aa) with a molecular mass of 81.86 kDa. A BLASTp comparison of the RdRp sequence showed the highest identity (66.67%) with that of Alternaria arborescens mitovirus 1 (AbMV1). Sequence comparisons and phylogenetic analysis revealed that BdMV2 is a new member of the genus Mitovirus of the family Mitoviridae.
Collapse
Affiliation(s)
- Hui Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Hong Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Xun Lu
- Agricultural Science Institute of XiangXi Tujia and Miao Autonomous Prefecture, Xiangxi, 416000, People's Republic of China
| | - YunSheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Wang H, Liu H, Zhou Q. The complete genome sequence of a new mitovirus from the phytopathogenic fungus Colletotrichum higginsianum. Arch Virol 2021; 166:1481-1484. [PMID: 33616726 DOI: 10.1007/s00705-021-04996-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
In this study, a novel mitovirus designed "Colletotrichum higginsianum mitovirus 1" (ChMV1) was isolated from the phytopathogenic fungus Colletotrichum higginsianum. The genome of this mitovirus is 2,893 nt in length with an A + U content of 61% and contains a large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp). A BLASTp analysis revealed that the RdRp domain of ChMV1 had 30.25% to 61.72% sequence identity to those of members of the genus Mitovirus and showed the highest degree of similarity (61.72% identity) to Botrytis cinerea mitovirus 3 (BcMV3). Phylogenetic analysis further indicated that ChMV1 is a member in the genus Mitovirus of the family Mitoviridae. To the best of our knowledge, this is the first report of a mitovirus in C. higginsianum.
Collapse
Affiliation(s)
- Hui Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Hong Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
15
|
Liu H, Liu M, Zhu H, Zhong J, Liao X, Zhou Q. Molecular characterization of a novel mitovirus from the plant‑pathogenic fungus Botryosphaeria dothidea. Arch Virol 2021; 166:633-637. [PMID: 33222011 DOI: 10.1007/s00705-020-04886-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/02/2020] [Indexed: 02/03/2023]
Abstract
Here, a novel mycovirus, Botryosphaeria dothidea mitovirus 1 (BdMV1), was isolated from a phytopathogenic fungus, Botryosphaeria dothidea, and its molecular characteristics were determined. BdMV1 has a genome of 2,667 nt that contains a single large open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF encodes an RNA-dependent RNA polymerase (RdRp) of 727 amino acids with a molecular mass of 81.64 kDa. BLASTp analysis revealed that the RdRp domain of BdMV1 has 39.59% and 39.18% sequence identity to Plasmopara viticola associated mitovirus 43 and Setosphaeria turcica mitovirus 1, respectively. Phylogenetic analysis further suggested that BdMV1 is a new member of the genus Mitovirus within the family Mitoviridae. To the best of our knowledge, this is the first report of a mitovirus in B. dothidea.
Collapse
Affiliation(s)
- Hong Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Miao Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Hongjian Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Xiaolan Liao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Abstract
Mycoviruses, just as the fungal endophytes they infect, are ubiquitous biological entities on Earth. Mycoviruses constitute a diverse group of viruses, and metagenomic approaches have-through recent discoveries of been mycoviruses-only recently began to provide evidence of this astonishing diversity. The current review presents (1) various mycoviruses which infect fungal endophytes and forest pathogens, (2) their presumed origins and interactions with fungi, plants and the environment, (3) high-throughput sequencing techniques that can be used to explore the horizontal gene transfer of mycoviruses, and (4) how the hypo- and hypervirulence induced by mycoviral infection is relevant to the biological control of pathogenic fungi.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Department of Ecology and Environmental Sciences (EMG), Umeå University, Umeå, Sweden.
| |
Collapse
|
17
|
Li S, Li Y, Hu C, Han C, Zhou T, Zhao C, Wu X. Full genome sequence of a new mitovirus from the phytopathogenic fungus Rhizoctonia solani. Arch Virol 2020; 165:1719-1723. [PMID: 32424446 DOI: 10.1007/s00705-020-04664-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022]
Abstract
A double-stranded RNA (dsRNA) segment was identified in Rhizoctonia solani anastomosis group (AG)-2-2IIIB, the primary causal agent of Rhizoctonia crown and root rot of sugar beet. The dsRNA segment represented the genome replication intermediate of a new mitovirus that was tentatively designated as "Rhizoctonia solani mitovirus 39" (RsMV-39). The complete sequence of the dsRNA was 2805 bp in length with 61.9% A+U content. Using either the fungal mitochondrial or universal genetic code, a protein of 840 amino acids containing an RNA-dependent RNA polymerase (RdRp) domain was predicted with a molecular mass of 94.46 kDa. BLASTp analysis revealed that the RdRp domain of RsMV-39 had 43.55% to 72.96% sequence identity to viruses in the genus Mitovirus, and was the most similar (72.96% identical) to that of Ceratobasidium mitovirus A (CbMV-A). Phylogenetic analysis based on RdRp domains clearly showed that RsMV-39 is a member of a distinct species in the genus Mitovirus of the family Mitoviridae. This is the first full genome sequence of a mycovirus associated with R. solani AG-2-2IIIB.
Collapse
Affiliation(s)
- Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuting Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Chenghui Hu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Chenggui Han
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
- College of Horticulture, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
18
|
A novel narnavirus isolated from the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Arch Virol 2020; 165:1011-1014. [DOI: 10.1007/s00705-020-04545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
|