1
|
Chinnadurai C, Wyatt NA, Weiland JJ, Neher OT, Hastings J, Bloomquist MW, Chu C, Chanda AK, Khan M, Bolton MD, Ramachandran V. Meta-transcriptomic analysis reveals the geographical expansion of known sugarbeet-infecting viruses and the occurrence of a novel virus in sugarbeet in the United States. FRONTIERS IN PLANT SCIENCE 2024; 15:1429402. [PMID: 39290724 PMCID: PMC11407286 DOI: 10.3389/fpls.2024.1429402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
In this study, meta-transcriptome sequencing was conducted on a total of 18 sugarbeet (Beta vulgaris L. subsp. vulgaris) sample libraries to profile the virome of field-grown sugarbeet to identify the occurrence and distribution of known and potentially new viruses from five different states in the United States. Sugarbeet roots with symptoms resembling rhizomania caused by beet necrotic yellow vein virus (BNYVV), or leaves exhibiting leaf-curling, yellowing to browning, or green mosaic were collected from the sugarbeet growing areas of California, Colorado, Idaho, Minnesota, and North Dakota. In silico analysis of de novo assembled contigs revealed the presence of nearly full-length genomes of BNYVV, beet soil-borne virus (BSBV), and beet soil-borne mosaic virus (BSBMV), which represent known sugarbeet-infecting viruses. Among those, BNYVV was widespread across the locations, whereas BSBV was prevalent in Minnesota and Idaho, and BSBMV was only detected in Minnesota. In addition, two recently reported Beta vulgaris satellite virus isoforms (BvSatV-1A and BvSatV-1B) were detected in new locations, indicating the geographical expansion of this known virus. Besides these known sugarbeet-infecting viruses, the bioinformatic analysis identified the widespread occurrence of a new uncharacterized Erysiphe necator-associated abispo virus (En_abispoV), a fungus-related virus that was identified in all 14 libraries. En_abispoV contains two RNA components, and nearly complete sequences of both RNA1 and RNA2 were obtained from RNASeq and were further confirmed by primer-walking RT-PCR and Sanger sequencing. Phylogenetic comparison of En_abispoV isolates obtained in this study showed varying levels of genetic diversity within RNA1 and RNA2 compared to previously reported isolates. The undertaken meta-transcriptomic approach revealed the widespread nature of coexisting viruses associated with field-grown sugarbeet exhibiting virus disease-like symptoms in the United States.
Collapse
Affiliation(s)
| | - Nathan A Wyatt
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - John J Weiland
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Oliver T Neher
- Sugarbeet Research, Amalgamated Sugar Company, Boise, ID, United States
| | - Joe Hastings
- Agriculture Department, American Crystal Sugar Company, Moorhead, MN, United States
| | - Mark W Bloomquist
- Agriculture Department, Southern Minnesota Beet Sugar Cooperative, Renville, MN, United States
| | - Chenggen Chu
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Ashok K Chanda
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
- Northwest Research and Outreach Center, University of Minnesota, Crookston, MN, United States
| | - Mohamed Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Melvin D Bolton
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Vanitharani Ramachandran
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| |
Collapse
|
2
|
Jaccard A, Dubuis N, Kellenberger I, Brodard J, Schnee S, Gindro K, Schumpp O. New viruses of Cladosporium sp. expand considerably the taxonomic structure of Gammapartitivirus genus. J Gen Virol 2023; 104:001879. [PMID: 37549001 PMCID: PMC10539651 DOI: 10.1099/jgv.0.001879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Despite the fact that Cladosporium sp. are ubiquitous fungi, their viromes have been little studied. By analysing a collection of Cladosporium fungi, two new partitiviruses named Cladosporium cladosporioides partitivirus 1 (CcPV1) and Cladosporium cladosporioides partitivirus 2 (CcPV2) co-infecting a strain of Cladosporium cladosporioides were identified. Their complete genome consists of two monocistronic dsRNA segments (RNA1 and RNA2) with a high percentage of pairwise identity on 5' and 3' end. The RNA directed RNA polymerase (RdRp) of both viruses and the capsid protein (CP) of CcPV1 display the classic characteristics required for their assignment to the Gammapartitivirus genus. In contrast, CcPV2 RNA2 encodes for a 41 KDa CP that is unusually smaller when aligned to CPs of other viruses classified in this genus. The structural role of this protein is confirmed by electrophoresis on acrylamide gel of purified viral particles. Despite the low percentage of identity between the capsid proteins of CcPV1 and CcPV2, their three-dimensional structures predicted by AlphaFold2 show strong similarities and confirm functional proximity. Fifteen similar viral sequences of unknown function were annotated using the CcPV2 CP sequence. The phylogeny of the CP was highly consistent with the phylogeny of their corresponding RdRp, supporting the organization of Gammapartitiviruses into three distinct clades despite stretching the current demarcation criteria. It is proposed that a new subgenus be created within the genus Gammapartitivirus for this new group.
Collapse
Affiliation(s)
| | - Nathalie Dubuis
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | | | - Justine Brodard
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Sylvain Schnee
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Katia Gindro
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Olivier Schumpp
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| |
Collapse
|
3
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
4
|
Novel Mycoviruses Discovered from a Metatranscriptomics Survey of the Phytopathogenic Alternaria Fungus. Viruses 2022; 14:v14112552. [PMID: 36423161 PMCID: PMC9693364 DOI: 10.3390/v14112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria fungus can cause notable diseases in cereals, ornamental plants, vegetables, and fruits around the world. To date, an increasing number of mycoviruses have been accurately and successfully identified in this fungus. In this study, we discovered mycoviruses from 78 strains in 6 species of the genus Alternaria, which were collected from 10 pear production areas using high-throughput sequencing technology. Using the total RNA-seq, we detected the RNA-dependent RNA polymerase of 19 potential viruses and the coat protein of two potential viruses. We successfully confirmed these viruses using reverse transcription polymerase chain reaction with RNA as the template. We identified 12 mycoviruses that were positive-sense single-stranded RNA (+ssRNA) viruses, 5 double-strand RNA (dsRNA) viruses, and 4 negative single-stranded RNA (-ssRNA) viruses. In these viruses, five +ssRNA and four -ssRNA viruses were novel mycoviruses classified into diverse the families Botourmiaviridae, Deltaflexivirus, Mymonaviridea, and Discoviridae. We identified a novel -ssRNA mycovirus isolated from an A. tenuissima strain HB-15 as Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2). Additionally, we characterized a novel +ssRNA mycovirus isolated from an A. tenuissima strain SC-8 as Alternaria tenuissima deltaflexivirus 1 (AtDFV1). According to phylogenetic and sequence analyses, we determined that AtNSRV2 was related to the viruses of the genus Sclerotimonavirus in the family Mymonaviridae. We also found that AtDFV1 was related to the virus family Deltaflexivirus. This study is the first to use total RNA sequencing to characterize viruses in Alternaria spp. These results expand the number of Alternaria viruses and demonstrate the diversity of these mycoviruses.
Collapse
|
5
|
Galán-Cubero R, Córdoba L, Rodríguez-Romero J, Chiapello M, Turina M, Ayllón MA. Molecular Data of a Novel Penoulivirus Associated with the Plant-Pathogenic Fungus Erysiphe necator. PHYTOPATHOLOGY 2022; 112:1587-1591. [PMID: 35509205 DOI: 10.1094/phyto-12-21-0536-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Rocío Galán-Cubero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Laura Córdoba
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Julio Rodríguez-Romero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28040, Spain
| |
Collapse
|
6
|
Fournier P, Pellan L, Barroso-Bergadà D, Bohan DA, Candresse T, Delmotte F, Dufour MC, Lauvergeat V, Le Marrec C, Marais A, Martins G, Masneuf-Pomarède I, Rey P, Sherman D, This P, Frioux C, Labarthe S, Vacher C. The functional microbiome of grapevine throughout plant evolutionary history and lifetime. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Gaafar YZA, Herz K, Hartrick J, Fletcher J, Blouin AG, MacDiarmid R, Ziebell H. Investigating the Pea Virome in Germany-Old Friends and New Players in the Field(s). Front Microbiol 2020; 11:583242. [PMID: 33281777 PMCID: PMC7691430 DOI: 10.3389/fmicb.2020.583242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Peas are an important legume for human and animal consumption and are also being used as green manure or intermediate crops to sustain and improve soil condition. Pea production faces constraints from fungal, bacterial, and viral diseases. We investigated the virome of German pea crops over the course of three successive seasons in different regions of pea production to gain an overview of the existing viruses. Pools from 540 plants, randomly selected from symptomatic and asymptomatic peas, and non-crop plants surrounding the pea fields were used for ribosomal RNA-depleted total RNA extraction followed by high-throughput sequencing (HTS) and RT-PCR confirmation. Thirty-five different viruses were detected in addition to nine associated nucleic acids. From these viruses, 25 are classified as either new viruses, novel strains or viruses that have not been reported previously from Germany. Pea enation mosaic virus 1 and 2 were the most prevalent viruses detected in the pea crops, followed by pea necrotic yellow dwarf virus (PNYDV) and turnip yellows virus which was also found also in the surrounding non-legume weeds. Moreover, a new emaravirus was detected in symptomatic peas in one region for two successive seasons. Most of the identified viruses are known to be aphid transmissible. The results revealed a high virodiversity in the German pea fields that poses new challenges to diagnosticians, researchers, risk assessors and policy makers, as the impact of the new findings are currently unknown.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kerstin Herz
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Jonas Hartrick
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - John Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Arnaud G Blouin
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Robin MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Heiko Ziebell
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
8
|
Liu C, Li M, Redda ET, Mei J, Zhang J, Wu B, Jiang X. A novel double-stranded RNA mycovirus isolated from Trichoderma harzianum. Virol J 2019; 16:113. [PMID: 31511029 PMCID: PMC6737671 DOI: 10.1186/s12985-019-1213-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Background Trichoderma spp. are used extensively in agriculture as biological control agents to prevent soil-borne plant diseases. In recent years, mycoviruses from fungi have attracted increasing attention due to their effects on their hosts, but Trichoderma mycoviruses have not been the subject of extensive study. We sought to discover novel mycoviruses from Trichoderma spp. and to determine the effects of the biocontrol function of Trichoderma spp. Methods Mycoviruses were screened by dsRNA extraction and metagenomic analysis. RT-PCR, 5′ RACE, and 3′ RACE were used to obtain the genome sequence. MEGA software was used to classify the new mycovirus. The effects of the identified mycovirus on the biological properties of the host strain 525 were evaluated using cucumber plants and Fusarium oxysporum f. sp. cucumerinum. Results A novel mycovirus, Trichoderma harzianum mycovirus 1 (ThMV1) (accession number MH155602), was discovered in Trichoderma harzianum strain 525, a soil-borne fungus collected from Inner Mongolia, China. The mycovirus exhibited a double-stranded RNA (dsRNA) genome with a complete genome sequence of 3160 base pairs and two open reading frames (ORFs) on the negative strand. Phylogenetic analysis indicated that it belongs to an unclassified family of dsRNA mycoviruses. The removal of ThMV1 from the host 525 strain reduced host biomass production and improved the biocontrol capability of the host for Fusarium oxysporum f. sp. cucumerinum. At same time, the presence of ThMV1 improved the growth of cucumber. Conclusion ThMV1 is a new unclassified mycovirus found in T. harzianum. It not only affects the phenotype of the host strain but also reduces its biocontrol function, which sheds light on the interaction between the mycovirus and Trichoderma spp. Electronic supplementary material The online version of this article (10.1186/s12985-019-1213-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenchen Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Mei Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Estifanos Tsegaye Redda
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Jie Mei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Jiantai Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Beilei Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China.
| | - Xiliang Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
9
|
Sutela S, Poimala A, Vainio EJ. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol Ecol 2019; 95:5542194. [DOI: 10.1093/femsec/fiz119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACTSoils support a myriad of organisms hosting highly diverse viromes. In this minireview, we focus on viruses hosted by true fungi and oomycetes (members of Stamenopila, Chromalveolata) inhabiting bulk soil, rhizosphere and litter layer, and representing different ecological guilds, including fungal saprotrophs, mycorrhizal fungi, mutualistic endophytes and pathogens. Viruses infecting fungi and oomycetes are characterized by persistent intracellular nonlytic lifestyles and transmission via spores and/or hyphal contacts. Almost all fungal and oomycete viruses have genomes composed of single-stranded or double-stranded RNA, and recent studies have revealed numerous novel viruses representing yet unclassified family-level groups. Depending on the virus–host combination, infections can be asymptomatic, beneficial or detrimental to the host. Thus, mycovirus infections may contribute to the multiplex interactions of hosts, therefore likely affecting the dynamics of fungal communities required for the functioning of soil ecosystems. However, the effects of fungal and oomycete viruses on soil ecological processes are still mostly unknown. Interestingly, new metagenomics data suggest an extensive level of horizontal virus transfer between plants, fungi and insects.
Collapse
Affiliation(s)
- Suvi Sutela
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Poimala
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
10
|
Wang S, Yang Z, Zhang T, Li N, Cao Q, Li G, Yuan Y, Liu D. Molecular Characterization of a Chrysovirus Isolated From the Citrus Pathogen Penicillium crustosum and Related Fungicide Resistance Analysis. Front Cell Infect Microbiol 2019; 9:156. [PMID: 31157173 PMCID: PMC6529537 DOI: 10.3389/fcimb.2019.00156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/26/2019] [Indexed: 12/30/2022] Open
Abstract
Penicillium sp. are damaging to a range of foods and fruits including citrus. To date, double-stranded (ds)RNA viruses have been reported in most Penicillium species but not in citrus pathogen P. crustosum. Here we report a novel dsRNA virus, designated as Penicillium crustosum chrysovirus 1 (PcCV1) and isolated from P. crustosum strain HS-CQ15. PcCV1 genome comprises four dsRNA segments, referred to as dsRNA1, dsRNA2, dsRNA3, and dsRNA4, which are 3600, 3177, 3078, and 2808 bp in length, respectively. Sequence analysis revealed the presence of four open reading frames (ORFs) in the PcCV1 genome. ORF1 in dsRNA1 encodes a putative RNA-dependent RNA polymerase (RdRp) and ORF2 in dsRNA2 encodes a putative coat protein (CP). The two remaining ORFs, ORF3 in dsRNA3 and ORF4 in dsRNA4, encode proteins of unknown function. Phylogenetic analysis based on RdRp sequences showed that PcCV1 clusters with other members of the genus Chrysovirus, family Chrysoviridae. Transmission electron microscope (TEM) analysis revealed that the PcCV1 visions are approximately 40 nm in diameter. Regarding biological effects of PcCV1, HS-CQ15 harboring the chrysovirus exhibited no obvious difference in colony morphology under fungicide-free conditions but decreased resistance to demethylation inhibitor (DMI)-fungicide prochloraz, as compared to PcCV1-cured strain. Here we provide the first evidence of a virus present in citrus pathogenic fungus P. crustosum and the chrysovirus-induced change in fungicide-resistance of its host fungus.
Collapse
Affiliation(s)
- Shengqiang Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Tingfu Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Na Li
- College of Life Science and Technology, Honghe University, Mengzi, China
| | - Qianwen Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guoqi Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Deli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
11
|
Molecular characterization of a new gammapartitivirus isolated from the citrus-pathogenic fungus Penicillium digitatum. Arch Virol 2018; 163:3185-3189. [PMID: 30076474 DOI: 10.1007/s00705-018-3951-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
To date, partitiviruses, including gammapartitiviruses, have been extensively studied in various fungal hosts but have not been reported in Penicillium digitatum (also called green mold, the pathogenic fungus infecting citrus). In the present work, we isolated and molecularly characterized a double-stranded RNA (dsRNA) partitivirus from citrus green mold, which we have named "Penicillium digitatum gammapartitivirus 1" (PdGV1). The bisegmented genome of PdGV1 contains two dsRNA segments (dsRNA1 and dsRNA2) with a length of 1795 bp and 1622 bp, respectively. Each of the two genomic dsRNAs contains a single open reading frame encoding a putative RNA-dependent RNA polymerase (RdRp) and a coat protein (CP), respectively. Phylogenetic analysis based on RdRp and CP sequences showed that PdGV1 clustered with mycoviruses belonging to the genus Gammapartitivirus, family Partitiviridae, e.g., Penicillium stoloniferum virus S. The 5'- and 3'-untranslated regions (UTRs) of the PdGV1 genomic dsRNAs both contained unique conserved RNA motifs that have never been found in any other partitivirus. This is the first report of a new gammapartitivirus that infects the citrus-pathogenic fungus P. digitatum.
Collapse
|