1
|
Gao K, Chen Q, Pan B, Sun Y, Xu Y, Chen D, Liu H, Luo C, Chen X, Li H, Huang C. Current Achievements and Future Prospects in Virus Elimination Technology for Functional Chrysanthemum. Viruses 2023; 15:1770. [PMID: 37632112 PMCID: PMC10459880 DOI: 10.3390/v15081770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Chrysanthemum is an important functional plant that is used for food, medicine and tea. Functional chrysanthemums become infected with viruses all around the world, seriously lowering their quality and yield. Viral infection has become an important limiting factor in chrysanthemum production. Functional chrysanthemum is often propagated asexually by cutting during production, and viral infection of seedlings is becoming increasingly serious. Chrysanthemums can be infected by a variety of viruses causing different symptoms. With the development of biotechnology, virus detection and virus-free technologies for chrysanthemum seedlings are becoming increasingly effective. In this study, the common virus species, virus detection methods and virus-free technology of chrysanthemum infection are reviewed to provide a theoretical basis for virus prevention, treatment and elimination in functional chrysanthemum.
Collapse
Affiliation(s)
- Kang Gao
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.G.); (D.C.); (H.L.); (C.L.); (X.C.)
| | - Qingbing Chen
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Q.C.); (B.P.); (Y.S.); (Y.X.)
| | - Bo Pan
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Q.C.); (B.P.); (Y.S.); (Y.X.)
| | - Yahui Sun
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Q.C.); (B.P.); (Y.S.); (Y.X.)
| | - Yuran Xu
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Q.C.); (B.P.); (Y.S.); (Y.X.)
| | - Dongliang Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.G.); (D.C.); (H.L.); (C.L.); (X.C.)
| | - Hua Liu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.G.); (D.C.); (H.L.); (C.L.); (X.C.)
| | - Chang Luo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.G.); (D.C.); (H.L.); (C.L.); (X.C.)
| | - Xi Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.G.); (D.C.); (H.L.); (C.L.); (X.C.)
| | - Haiying Li
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Q.C.); (B.P.); (Y.S.); (Y.X.)
| | - Conglin Huang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.G.); (D.C.); (H.L.); (C.L.); (X.C.)
| |
Collapse
|
2
|
Li J, Wu X, Liu H, Wang X, Yi S, Zhong X, Wang Y, Wang Z. Identification and Molecular Characterization of a Novel Carlavirus Infecting Chrysanthemum morifolium in China. Viruses 2023; 15:v15041029. [PMID: 37113009 PMCID: PMC10141686 DOI: 10.3390/v15041029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium) is an important ornamental and medicinal plant suffering from many viruses and viroids worldwide. In this study, a new carlavirus, tentatively named Chinese isolate of Carya illinoinensis carlavirus 1 (CiCV1-CN), was identified from chrysanthemum plants in Zhejiang Province, China. The genome sequence of CiCV1-CN was 8795 nucleotides (nt) in length, with a 68-nt 5'-untranslated region (UTR) and a 76-nt 3'-UTR, which contained six predicted open reading frames (ORFs) that encode six corresponding proteins of various sizes. Phylogenetic analyses based on full-length genome and coat protein sequences revealed that CiCV1-CN is in an evolutionary branch with chrysanthemum virus R (CVR) in the Carlavirus genus. Pairwise sequence identity analysis showed that, except for CiCV1, CiCV1-CN has the highest whole-genome sequence identity of 71.3% to CVR-X6. At the amino acid level, the highest identities of predicted proteins encoded by the ORF1, ORF2, ORF3, ORF4, ORF5, and ORF6 of CiCV1-CN were 77.1% in the CVR-X21 ORF1, 80.3% in the CVR-X13 ORF2, 74.8% in the CVR-X21 ORF3, 60.9% in the CVR-BJ ORF4, 90.2% in the CVR-X6 and CVR-TX ORF5s, and 79.4% in the CVR-X21 ORF6. Furthermore, we also found a transient expression of the cysteine-rich protein (CRP) encoded by the ORF6 of CiCV1-CN in Nicotiana benthamiana plants using a potato virus X-based vector, which can result in a downward leaf curl and hypersensitive cell death over the time course. These results demonstrated that CiCV1-CN is a pathogenic virus and C. morifolium is a natural host of CiCV1.
Collapse
Affiliation(s)
- Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xiaoyin Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Hui Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaomei Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| |
Collapse
|
3
|
Silva JMF, Melo FL, Elena SF, Candresse T, Sabanadzovic S, Tzanetakis IE, Blouin AG, Villamor DEV, Mollov D, Constable F, Cao M, Saldarelli P, Cho WK, Nagata T. Virus classification based on in-depth sequence analyses and development of demarcation criteria using the Betaflexiviridae as a case study. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Currently, many viruses are classified based on their genome organization and nucleotide/amino acid sequence identities of their capsid and replication-associated proteins. Although biological traits such as vector specificities and host range are also considered, this later information is scarce for the majority of recently identified viruses, characterized only from genomic sequences. Accordingly, genomic sequences and derived information are being frequently used as the major, if not only, criteria for virus classification and this calls for a full review of the process. Herein, we critically addressed current issues concerning classification of viruses in the family Betaflexiviridae in the era of high-throughput sequencing and propose an updated set of demarcation criteria based on a process involving pairwise identity analyses and phylogenetics. The proposed framework has been designed to solve the majority of current conundrums in taxonomy and to facilitate future virus classification. Finally, the analyses performed herein, alongside the proposed approaches, could be used as a blueprint for virus classification at-large.
Collapse
Affiliation(s)
- João Marcos Fagundes Silva
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, University of Brasília, Brasília 70910-900, Brazil
| | - Fernando Lucas Melo
- Departamento de Fitopatologia, Instituto de Biología Integrativa de Sistemas, University of Brasília, Brasília 70910-900, Brazil
| | - Santiago F. Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Instituto de Biología Integrativa de Sistemas (I2 13 SysBio), CSIC-Universitat de València, Paterna 14 46980 València, Spain
| | - Thierry Candresse
- Univ. Bordeaux, INRAE, UMR 1332 BFP, 33140 Villenave d’Ornon, France
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | | | - Arnaud G. Blouin
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland
| | | | - Dimitre Mollov
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, 97330, USA
| | - Fiona Constable
- Department of Jobs Precincts and Regions, Agriculture Victoria Research, Agribio, Bundoora, VIC 3083, Australia
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, PR China
| | - Pasquale Saldarelli
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Via Amendola 122/D, 70126 Bari, Italy
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
4
|
Zhong X, Yang L, Li J, Tang Z, Wu C, Zhang L, Zhou X, Wang Y, Wang Z. Integrated next-generation sequencing and comparative transcriptomic analysis of leaves provides novel insights into the ethylene pathway of Chrysanthemum morifolium in response to a Chinese isolate of chrysanthemum virus B. Virol J 2022; 19:182. [DOI: 10.1186/s12985-022-01890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Chrysanthemum virus B (CVB), a key member of the genus Carlavirus, family Betaflexiviridae, causes severe viral diseases in chrysanthemum (Chrysanthemum morifolium) plants worldwide. However, information on the mechanisms underlying the response of chrysanthemum plants to CVB is scant.
Methods
Here, an integrated next-generation sequencing and comparative transcriptomic analysis of chrysanthemum leaves was conducted to explore the molecular response mechanisms of plants to a Chinese isolate of CVB (CVB-CN) at the molecular level.
Results
In total, 4934 significant differentially expressed genes (SDEGs) were identified to respond to CVB-CN, of which 4097 were upregulated and 837 were downregulated. Gene ontology and functional classification showed that the majority of upregulated SDEGs were categorized into gene cohorts involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, and ribosome metabolism. Enrichment analysis demonstrated that ethylene pathway-related genes were significantly upregulated following CVB-CN infection, indicating a strong promotion of ethylene biosynthesis and signaling. Furthermore, disruption of the ethylene pathway in Nicotiana benthamiana, a model plant, using virus-induced gene silencing technology rendered them more susceptible to cysteine-rich protein of CVB-CN induced hypersensitive response, suggesting a crucial role of this pathway in response to CVB-CN infection.
Conclusion
This study provides evidence that ethylene pathway has an essential role of plant in response to CVB and offers valuable insights into the defense mechanisms of chrysanthemum against Carlavirus.
Collapse
|
5
|
Chirkov SN, Sheveleva A, Snezhkina A, Kudryavtseva A, Krasnov G, Zakubanskiy A, Mitrofanova I. Highly divergent isolates of chrysanthemum virus B and chrysanthemum virus R infecting chrysanthemum in Russia. PeerJ 2022; 10:e12607. [PMID: 35036085 PMCID: PMC8742542 DOI: 10.7717/peerj.12607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/16/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chrysanthemum is a popular ornamental and medicinal plant that suffers from many viruses and viroids. Among them, chrysanthemum virus B (CVB, genus Carlavirus, family Betaflexiviridae) is widespread in all chrysanthemum-growing regions. Another carlavirus, chrysanthemum virus R (CVR), has been recently discovered in China. Information about chrysanthemum viruses in Russia is very scarce. The objective of this work was to study the prevalence and genetic diversity of CVB and CVR in Russia. METHODS We surveyed the chrysanthemum (Chrysanthemum morifolium Ramat.) germplasm collection in the Nikita Botanical Gardens, Yalta, Russia. To detect CVB and CVR, we used RT-PCR with virus-specific primers. To reveal the complete genome sequences of CVB and CVR isolates, metatransciptomic analysis of the cultivars Ribonette, Fiji Yellow, and Golden Standard plants, naturally co-infected with CVB and CVR, was performed using Illumina high-throughput sequencing. The recombination detection tool (RDP4) was employed to search for recombination in assembled genomes. RESULTS A total of 90 plants of 23 local and introduced chrysanthemum cultivars were surveyed. From these, 58 and 43% plants tested positive for CVB and CVR, respectively. RNA-Seq analysis confirmed the presence of CVB and CVR, and revealed tomato aspermy virus in each of the three transcriptomes. Six near complete genomes of CVB and CVR were assembled from the RNA-Seq reads. The CVR isolate X21 from the cultivar Golden Standard was 92% identical to the Chinese isolate BJ. In contrast, genomes of the CVR isolates X6 and X13 (from the cultivars Ribonette and Fiji Yellow, respectively), were only 76% to 77% identical to the X21 and BJ, and shared 95% identity to one another and appear to represent a divergent group of the CVR. Two distantly related CVB isolates, GS1 and GS2, were found in a plant of the cultivar Golden Standard. Their genomes shared from 82% to 87% identity to each other and the CVB genome from the cultivar Fiji Yellow (isolate FY), as well as to CVB isolates from Japan and China. A recombination event of 3,720 nucleotides long was predicted in the replicase gene of the FY genome. It was supported by seven algorithms implemented in RDP4 with statistically significant P-values. The inferred major parent was the Indian isolate Uttar Pradesh (AM765837), and minor parent was unknown. CONCLUSION We found a wide distribution of CVB and CVR in the chrysanthemum germplasm collection of the Nikita Botanical Gardens, which is the largest in Russia. Six near complete genomes of CVR and CVB isolates from Russia were assembled and characterized for the first time. This is the first report of CVR in Russia and outside of China thus expanding the information on the geographical distribution of the virus. Highly divergent CVB and CVR isolates have been identified that contributes the better understanding the genetic diversity of these viruses.
Collapse
Affiliation(s)
- Sergei N. Chirkov
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia,Kurchatov Genomic Center-NBG-NSC, Yalta, Russia
| | - Anna Sheveleva
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasiya Snezhkina
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kudryavtseva
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George Krasnov
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Zakubanskiy
- Department of Medical Genomics, Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - Irina Mitrofanova
- Kurchatov Genomic Center-NBG-NSC, Yalta, Russia,Plant Developmental Biology, Biotechnology and Biosafety Department, Nikita Botanical Gardens, Yalta, Russia
| |
Collapse
|
6
|
Yan K, Du X, Mao B. Production of Virus-Free Chrysanthemum (Chrysanthemum morifolium Ramat) by Tissue Culture Techniques. Methods Mol Biol 2022; 2400:171-186. [PMID: 34905201 DOI: 10.1007/978-1-0716-1835-6_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Almost all plants in their natural environment are commonly infected by viruses. These viral infections can cause devastating diseases and result in severe yield and economic losses, making viral diseases an important limiting factor for agricultural production and sustainable development. However, these losses can be effectively reduced through the productions and applications of virus-free plantlets. In vitro culture techniques are the most successful approaches for efficient eradication of various viruses from almost all the most economically important crops. Techniques for producing virus-free plantlets include meristem tip culture, somatic embryogenesis, chemotherapy, thermotherapy, electrotherapy, shoot tip cryotherapy, and micrografting. Among them, meristem tip culture is currently the most widely used. Here, we describe a detailed protocol for producing virus-free plantlets of Chrysanthemum morifolium Ramat using tissue culture techniques.
Collapse
Affiliation(s)
- Keru Yan
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou, China
| | - Xuejie Du
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou, China
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou, China.
| |
Collapse
|
7
|
Diaz-Lara A, Mollov D, Golino D, Al Rwahnih M. Complete genome sequence of rose virus A, the first carlavirus identified in rose. Arch Virol 2019; 165:241-244. [PMID: 31701224 DOI: 10.1007/s00705-019-04460-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022]
Abstract
A novel virus was discovered in a Rosa wichuraiana Crep. by high-throughput sequencing and tentatively named "rose virus A" (RVA). Based on sequence identity and phylogenetic analysis, RVA represents a new member of the genus Carlavirus (family Betaflexiviridae). The genome of RVA is 8,849 nucleotides long excluding the poly(A) tail and contains six open reading frames (ORFs). The predicted ORFs code for a replicase, triple gene block (TGB), coat protein, and nucleic acid binding protein, as in a typical carlavirus. RVA is the first carlavirus identified in rose and has the highest nucleotide sequence similarity to poplar mosaic virus. Reverse transcription-PCR-based assays were developed to confirm the presence of RVA in the original source and to screen additional rose plants.
Collapse
Affiliation(s)
- Alfredo Diaz-Lara
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA
| | - Dimitre Mollov
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA
| | - Deborah Golino
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|