1
|
Zhang L, Wu S, Zhao M, Ghanem H, Wu G, Li M, Qing L. Molecular Identification and Genetic Diversity Analysis of Papaya Leaf Curl China Virus Infecting Ageratum conyzoides. THE PLANT PATHOLOGY JOURNAL 2024; 40:551-558. [PMID: 39397308 PMCID: PMC11471930 DOI: 10.5423/ppj.nt.04.2024.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 10/15/2024]
Abstract
Papaya leaf curl China virus (PaLCuCNV) is a damaging plant pathogen causing substantial losses to crop. The complete genomes of three PaLCuCNV isolates from Ageratum conyzoides were obtained and combined with the 68 reference isolates in GenBank for comprehensive genetic diversity analyses using specialized computational tools. Sequence alignment revealed nucleotide sequence similarity ranging from 85.3% to 99.9% among 71 PaLCuCNV isolates. Employing phylogenetic analysis, 71 PaLCuCNV sequences were clustered into five groups, with no significant correlation observed between genetic differentiation and either host species or geographical origin. Additionally, 13 recombination events across all PaLCuCNV isolates were identified. Genetic diversity analysis indicated the ongoing expansion and evolution of PaLCuCNV populations, supported by a neutral model. Moreover, significant genetic differentiation was observed among distinct viral populations, primarily attributed to genetic drift. Overall, our findings provide valuable insights into the detection, genetic variation, and evolutionary dynamics of PaLCuCNV.
Collapse
Affiliation(s)
- Liping Zhang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shujie Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
- Institute of Experimental Physics, Free University of Berlin, Berlin 14195, Germany
| | - Meisheng Zhao
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Hussein Ghanem
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| |
Collapse
|
2
|
Li P, Guo L, Lang X, Li M, Wu G, Wu R, Wang L, Zhao M, Qing L. Geminivirus C4 proteins inhibit GA signaling via prevention of NbGAI degradation, to promote viral infection and symptom development in N. benthamiana. PLoS Pathog 2022; 18:e1010217. [PMID: 35390110 PMCID: PMC9060335 DOI: 10.1371/journal.ppat.1010217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/02/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
The phytohormone gibberellin (GA) is a vital plant signaling molecule that regulates plant growth and defense against abiotic and biotic stresses. To date, the molecular mechanism of the plant responses to viral infection mediated by GA is still undetermined. DELLA is a repressor of GA signaling and is recognized by the F-box protein, a component of the SCFSLY1/GID2 complex. The recognized DELLA is degraded by the ubiquitin-26S proteasome, leading to the activation of GA signaling. Here, we report that ageratum leaf curl Sichuan virus (ALCScV)-infected N. benthamiana plants showed dwarfing symptoms and abnormal flower development. The infection by ALCScV significantly altered the expression of GA pathway-related genes and decreased the content of endogenous GA in N. benthamiana. Furthermore, ALCScV-encoded C4 protein interacts with the DELLA protein NbGAI and interferes with the interaction between NbGAI and NbGID2 to prevent the degradation of NbGAI, leading to inhibition of the GA signaling pathway. Silencing of NbGAI or exogenous GA3 treatment significantly reduces viral accumulation and disease symptoms in N. benthamiana plants. The same results were obtained from experiments with the C4 protein encoded by tobacco curly shoot virus (TbCSV). Therefore, we propose a novel mechanism by which geminivirus C4 proteins control viral infection and disease symptom development by interfering with the GA signaling pathway. Gibberellins (GAs) are plant hormones essential for many developmental processes in plants. Plant virus infection can induce abnormal flower development and influence the GA pathway, resulting in plant dwarfing symptoms, but the underlying mechanisms are still not well described. Here, we demonstrate that the geminivirus-encoded C4 protein regulates the GA signaling pathway to promote viral accumulation and disease symptom development. By directly interacting with NbGAI, the C4 protein interferes with the interaction between NbGAI and NbGID2, which inhibits the degradation of NbGAI. As a result, the GA signaling pathway is blocked, and the infected plants display symptoms of typical dwarfing and delayed flowering. Our results reveal a novel mechanism by which geminivirus C4 proteins influence viral pathogenicity by interfering with the GA signaling pathway and provide new insights into the interaction between the virus and host.
Collapse
Affiliation(s)
- Pengbai Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Liuming Guo
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Xinyuan Lang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Rui Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Lyuxin Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Meisheng Zhao
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- National Citrus Engineering Research Center, Southwest University, Chongqing, People’s Republic of China
- * E-mail:
| |
Collapse
|
3
|
Li P, Su F, Meng Q, Yu H, Wu G, Li M, Qing L. The C5 protein encoded by Ageratum leaf curl Sichuan virus is a virulence factor and contributes to the virus infection. MOLECULAR PLANT PATHOLOGY 2021; 22:1149-1158. [PMID: 34219358 PMCID: PMC8359000 DOI: 10.1111/mpp.13103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 05/21/2023]
Abstract
Earlier reports have indicated that begomoviruses encode four proteins (AC1/C1, AC2/C2, AC3/C3, and AC4/C4 proteins) using complementary-sense DNA as the template. In recent years, several reports have shown that some begomoviruses also encode an AC5/C5 protein from the complementary DNA strand, and these AC5/C5 proteins play different roles in virus infections. Here, we provide evidence showing that Ageratum leaf curl Sichuan virus (ALCScV), a monopartite begomovirus, also encodes a C5 protein that is important for disease symptom formation and can affect viral replication. Infection of Nicotiana benthamiana plants with a potato virus X (PVX)-based vector carrying the ALCScV C5 gene resulted in more severe disease symptoms and higher virus accumulation levels. ALCScV C5 protein can be found in the cytoplasm and the nucleus. Furthermore, this protein is also a suppressor of posttranscriptional gene silencing. Mutational analysis showed that knockout of C5 gene expression significantly reduced ALCScV-induced disease symptoms and virus accumulation, while expression of the C5 gene using the PVX-based vector enhanced ALCScV accumulation in coinfected N. benthamiana plants.
Collapse
Affiliation(s)
- Pengbai Li
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Feng Su
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Qiyuan Meng
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Huabin Yu
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| |
Collapse
|
4
|
Li P, Jing C, Ren H, Jia Z, Ghanem H, Wu G, Li M, Qing L. Analysis of Pathogenicity and Virulence Factors of Ageratum leaf curl Sichuan virus. FRONTIERS IN PLANT SCIENCE 2020; 11:527787. [PMID: 33042171 PMCID: PMC7527423 DOI: 10.3389/fpls.2020.527787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/28/2020] [Indexed: 05/05/2023]
Abstract
Ageratum leaf curl Sichuan virus (ALCScV) is a novel monopartite begomovirus, which was identified from Ageratum conyzoides plants in Sichuan Province, China. In this study, we showed that ALCScV can induce typical dwarf and downward leaf-curling symptoms in Ageratum conyzoides, Helianthus annuus, and Nicotiana benthamiana plants and that the noncognate betasatellite can enhance disease symptoms and increase viral accumulation. Expression of the ALCScV-encoded V2, C1, and C4 proteins through a Potato virus X (PVX) vector caused severe symptoms in N. benthamiana. Further study revealed no symptoms in N. benthamiana plants inoculated with infectious ALCScV clones lacking the C4 protein and that the relative viral DNA accumulation levels significantly decreased when compared with ALCScV-inoculated plants. Thus, our mutational analyses demonstrated that C4 is a pathogenicity determinant that plays key roles in symptom formation and virus accumulation. Furthermore, we also demonstrated that the second glycine of C4 was critical for ALCScV pathogenicity.
Collapse
|
5
|
Jing C, Li P, Zhang J, Wang R, Wu G, Li M, Xie L, Qing L. The Malvastrum Yellow Vein Virus C4 Protein Promotes Disease Symptom Development and Enhances Virus Accumulation in Plants. Front Microbiol 2019; 10:2425. [PMID: 31708897 PMCID: PMC6823909 DOI: 10.3389/fmicb.2019.02425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
The begomovirus C4 protein is required for disease symptom development during virus infection in host plants. It can reprogram the cell cycle process for more efficient virus accumulation. In this study, we showed that the Malvastrum yellow vein virus (MaYVV) C4 protein could cause leaf up-ward curling and flower malformation, and increase virus accumulation in plants using PVX-based transient expression technology. We also demonstrated that, in the presence of its cognate betasatellite DNA (MaYVB), a mutant MaYVV, defective in producing the C4 protein (MaYVVΔC4), caused and alleviated infection in Nicotiana benthamiana. Transgenic plants expressing the MaYVV C4 protein showed upward leaf curling and uneven leaf lamina growth. Microscopic analysis showed that the epidermal cells of the C4 transgenic leaves were much smaller than those in the wild type (WT) leaves, and the mesophyll cells size and arrangement of transgenic plants was significantly altered. Inoculation of C4 transgenic plants with MaYVV or MaYVVΔC4 alone or associated with MaYVB showed that the transgenic C4 protein could promote viral and betasatellite accumulation and rescue the accumulation defect of MaYVVΔC4. Other transient expression assays also confirmed that the MaYVV C4 protein could suppress silencing of a GFP gene. In summary, our results indicate that the MaYVV C4 protein is a determinant of disease symptom and viral DNA accumulation. This protein can also function as a suppressor of RNA silencing and alter cell division and expansion.
Collapse
Affiliation(s)
- Chenchen Jing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Pengbai Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Jiayuan Zhang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Rui Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Li Xie
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Qadir R, Khan ZA, Monga D, Khan JA. Diversity and recombination analysis of Cotton leaf curl Multan virus: a highly emerging begomovirus in northern India. BMC Genomics 2019; 20:274. [PMID: 30954067 PMCID: PMC6451280 DOI: 10.1186/s12864-019-5640-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/24/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Cotton leaf curl disease (CLCuD), caused by begomoviruses in association with satellite molecules, is a major threat to cotton production causing enormous losses to cotton crop in most of the cotton growing countries including Indian subcontinent. In this study, isolates of begomovirus and satellite molecules associated with CLCuD were collected from North India (Haryana, New Delhi). They were amplified employing rolling circle replication mechanism, cloned, sequenced and, their phylogenetic and recombination analysis was performed. RESULTS The five Cotton leaf curl Multan virus (CLCuMuV) isolates investigated in this study showed monopartite organization of the genome typical of Old World begomoviruses. Nucleotide sequence analyses assigned them as the strains of CLCuMuV and were designated as CLCuMuV-SR13, CLCuMuV-SR14, CLCuMuV-ND14, CLCuMuV-ND15 and CLCuMuV-SR15. The genome of CLCuMuV-SR13 shared a highest level of nucleotide sequence identity (98%) with CLCuMuV (JN678804), CLCuMuV-SR14 and CLCuMuV-SR15 exhibited 96% with CLCuMuV (KM096471), while isolates CLCuMuV-ND15 and CLCuMuV-SR15 revealed 96% sequence identity with CLCuMuV (AY765253). The four betasatellite molecules investigated in this study shared 95-99% nucleotide sequence identity with Cotton leaf curl Multan betasatellite (CLCuMB) from India. The betasatellite molecules were designated as CLCuMB-SR13, CLCuMB-SR14, CLCuMB-ND14 and CLCuMB-ND15. Alphasatellite molecules in this study, designated as GLCuA-SR14, GLCuA-ND14 and GLCuA-SR15, revealed 98% identity with Guar leaf curl alphasatellite (GLCuA) reported from Pakistan. CONCLUSION The phylogenetic and recombination studies concluded that the isolates of CLCuMuV genomes undertaken in this study have a potential recombinant origin. Remarkably, significant recombination was detected in almost all the genes with contribution of Cotton leaf curl Kokhran Virus (CLCuKoV) in IR, V1, V2, C1, C4 and C5 regions and of CLCuMuV in C2 region of CLCuMuV-SR14. CLCuKoV also donated in C2, C3 regions of CLCuMuV-ND14; V1, V2, C2 and C3 regions of CLCuMuV-ND15 and C1 of CLCuMuV-SR15. Altogether, these observations signify the uniqueness in Indian CLCuMuV isolates showing contribution of CLCuKoV in all the genes. An interesting observation was frequent identification of GLCuA in CLCuD leaf samples.
Collapse
Affiliation(s)
- Razia Qadir
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India
| | - Zainul A Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India
- Present address: Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Dilip Monga
- Central Institute for Cotton Research (ICAR-CICR), Regional Station, Sirsa, Haryana, 125055, India
| | - Jawaid A Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India.
| |
Collapse
|