1
|
Feng M, Chen M, Yuan Y, Liu Q, Cheng R, Yang T, Li L, Guo R, Dong Y, Chen J, Yang Y, Yan Y, Cui H, Jing D, Kang J, Chen S, Li J, Zhu M, Huang C, Zhang Z, Kormelink R, Tao X. Interspecies/Intergroup Complementation of Orthotospovirus Replication and Movement through Reverse Genetics Systems. J Virol 2023; 97:e0180922. [PMID: 37022194 PMCID: PMC10134808 DOI: 10.1128/jvi.01809-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/21/2023] [Indexed: 04/07/2023] Open
Abstract
Orthotospoviruses, the plant-infecting bunyaviruses, cause serious diseases in agronomic crops and pose major threats to global food security. The family of Tospoviridae contains more than 30 members that are classified into two geographic groups, American-type and Euro/Asian-type orthotospovirus. However, the genetic interaction between different species and the possibility, during mixed infections, for transcomplementation of gene functions by orthotospoviruses from different geographic groups remains underexplored. In this study, minireplicon-based reverse genetics (RG) systems have been established for Impatiens necrotic spot virus (INSV) (an American-type orthotospovirus) and for Calla lily chlorotic spot virus and Tomato zonate spot virus (CCSV and TZSV) (two representative Euro/Asian orthotospoviruses). Together with the earlier established RG system for Tomato spotted wilt virus (TSWV), a type species of the Orthotospovirus American-clade, viral replicase/movement proteins were exchanged and analyzed on interspecies transcomplementation. Whereas the homologous RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) protein supported the replication of orthotospoviruses from both geographic groups, heterologous combinations of RdRp from one group and N from the other group were unable to support the replication of viruses from both groups. Furthermore, the NSm movement protein (MP), from both geographic groups of orthotospoviruses, was able to transcomplement heterologous orthotospoviruses or a positive-strand Cucumber mosaic virus (CMV) in their movement, albeit with varying efficiency. MP from Rice stripe tenuivirus (RSV), a plant-infecting bunyavirus that is distinct from orthotospoviruses, or MP from CMV also moves orthotospoviruses. Our findings gain insights into the genetic interaction/reassortant potentials for the segmented plant orthotospoviruses. IMPORTANCE Orthotospoviruses are agriculturally important negative-strand RNA viruses and cause severe yield-losses on many crops worldwide. Whereas the emergence of new animal-infecting bunyaviruses is frequently associated with genetic reassortants, this issue remains underexposed with the plant-infecting orthotospovirus. With the development of reverse genetics systems for orthotospoviruses from different geographic regions, the interspecies/intergroup replication/movement complementation between American- and Euro/Asian-type orthotospoviruses were investigated. Genomic RNAs from American orthotospoviruses can be replicated by the RdRp and N from those of Euro/Asia-group orthotospoviruses, and vice versa. However, their genomic RNAs cannot be replicated by a heterologous combination of RdRp from one geographic group and N from another geographic group. Cell-to-cell movement of viral entity is supported by NSm from both geographic groups, with highest efficiency by NSm from viruses belonging to the same group. Our findings provide important insights into the genetic interaction and exchange ability of viral gene functions between different species of orthotospovirus.
Collapse
Affiliation(s)
- Mingfeng Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Minglong Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yulong Yuan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Qinhai Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ruixiang Cheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Tongqing Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Luyao Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Rong Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yongxin Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jing Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yawen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yuling Yan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Hongmin Cui
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Dong Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jinrui Kang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Shuxian Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jia Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Zhongkai Zhang
- Yunnan Provincial Key Laboratory of Agri-Biotechnology, Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P. R. China
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
2
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
3
|
Zhao K, Rosa C. Thrips as the Transmission Bottleneck for Mixed Infection of Two Orthotospoviruses. PLANTS 2020; 9:plants9040509. [PMID: 32326567 PMCID: PMC7238027 DOI: 10.3390/plants9040509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022]
Abstract
Mixed infections provide opportunities for viruses to increase genetic diversity by facilitating genomic reassortment or recombination, and they may lead to the emergence of new virus species. Mixed infections of two economically important orthotospoviruses, Tomato spotted wilt orthotospovirus (TSWV) and Impatiens necrotic spot orthotospovirus (INSV), were found in recent years, but no natural reassortants between INSV and TSWV were ever reported. The goal of this study was to establish how vector preferences and the ability to transmit INSV and TSWV influence transmission and establishment of mixed infections. Our results demonstrate that thrips prefer to oviposit on TSWV and INSV mixed-infected plants over singly infected or healthy plants, providing young nymphs with the opportunity to acquire both viruses. Conversely, we observed that thrips served as a bottleneck during transmission and favored transmission of one of the two viruses over the second one, or over transmission of both viruses simultaneously. This constraint was relaxed in plants, when transmission of TSWV and INSV occurred sequentially, demonstrating that plants serve as orthotospovirus permissive hosts, while thrips serve as a bottleneck. Viral fitness, as measured by virus replication, transmission, and competition with other viral strains, is not well studied in mixed infection. Our study looks at the success of transmission during mixed infection of orthotopoviruses, enhancing the understanding of orthotospovirus epidemiology and evolution.
Collapse
|