1
|
Fan Y, Zhao W, Tang X, Yang M, Yang Y, Zhang Z, Cheng B, Zhou E, He Z. Co-infection of Four Novel Mycoviruses from Three Lineages Confers Hypovirulence on Phytopathogenic Fungus Ustilaginoidea virens. RICE (NEW YORK, N.Y.) 2024; 17:44. [PMID: 39014281 PMCID: PMC11252108 DOI: 10.1186/s12284-024-00721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Rice false smut caused by Ustilaginoidea virens has become one of the most important diseases of rice. Mycoviruses are viruses that can infect fungi with the potential to control fungal diseases. However, little is known about the biocontrol role of hypoviruses in U. virens. In this study, we revealed that the hypovirulence-associated U. virens strain Uv325 was co-infected by four novel mycoviruses from three lineages, designated Ustilaginoidea virens RNA virus 16 (UvRV16), Ustilaginoidea virens botourmiavirus virus 8 (UvBV8), Ustilaginoidea virens botourmiavirus virus 9 (UvBV9), and Ustilaginoidea virens narnavirus virus 13 (UvNV13), respectively. The U. virens strain co-infected by four mycoviruses showed slower growth rates, reduced conidial yield, and attenuated pigmentation. We demonstrated that UvRV16 was not only the major factor responsible for the hypovirulent phenotype in U. vriens, but also able to prevent U. virens to accumulate more mycotoxin, thereby weakening the inhibitory effects on rice seed germination and seedling growth. Additionally, we indicated that UvRV16 can disrupt the antiviral response of U. virens by suppressing the transcriptional expression of multiple genes involved in autophagy and RNA silencing. In conclusion, our study provided new insights into the biological control of rice false smut.
Collapse
Affiliation(s)
- Yu Fan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhua Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolin Tang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Mei Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yingqing Yang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Zixuan Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Baoping Cheng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Key Laboratory of Green Prevention and Control On Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong, 510642, China.
| | - Erxun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhenrui He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Vijayraghavan S, Kozmin SG, Xi W, McCusker JH. A novel narnavirus is widespread in Saccharomyces cerevisiae and impacts multiple host phenotypes. G3 (BETHESDA, MD.) 2022; 13:6957440. [PMID: 36560866 PMCID: PMC9911063 DOI: 10.1093/g3journal/jkac337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
RNA viruses are a widespread, biologically diverse group that includes the narnaviridiae, a family of unencapsidated RNA viruses containing a single ORF that encodes an RNA-dependent RNA polymerase. In the yeast Saccharomyces cerevisiae, the 20S and 23S RNA viruses are well-studied members of the narnaviridiae, which are present at low intracellular copy numbers, unless induced by stress or unfavorable growth conditions, and are not known to affect host fitness. In this study, we describe a new S. cerevisiae narnavirus that we designate as N1199. We show that N1199 is uniquely present as a double-stranded RNA at a high level relative to other known members of this family in 1 strain background, YJM1199, and is present as a single-stranded RNA at lower levels in 98 of the remaining 100-genomes strains. Furthermore, we see a strong association between the presence of high level N1199 and host phenotype defects, including greatly reduced sporulation efficiency and growth on multiple carbon sources. Finally, we describe associations between N1199 abundance and host phenotype defects, including autophagy.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Present address: Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 561 Research Drive 3020, Jones Bldg. Room 239, Durham, NC 27710, USA
| | - Wen Xi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 561 Research Drive 3020, Jones Bldg. Room 239, Durham, NC 27710, USA
| | - John H McCusker
- Corresponding author: Department of Molecular Genetics and Microbiology, Duke University Medical Center, 561 Research Drive 3020, Jones Bldg. Room 239, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Maske BL, De Carvalho Neto DP, da Silva GB, De Dea Lindner J, Soccol CR, de Melo Pereira GV. Yeast viruses and their implications in fermented foods and beverages. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Crucitti D, Chiapello M, Oliva D, Forgia M, Turina M, Carimi F, La Bella F, Pacifico D. Identification and Molecular Characterization of Novel Mycoviruses in Saccharomyces and Non- Saccharomyces Yeasts of Oenological Interest. Viruses 2021; 14:v14010052. [PMID: 35062256 PMCID: PMC8778689 DOI: 10.3390/v14010052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Wine yeasts can be natural hosts for dsRNA, ssRNA viruses and retrotransposon elements. In this study, high-throughput RNA sequencing combined with bioinformatic analyses unveiled the virome associated to 16 Saccharomyces cerevisiae and 8 non-Saccharomyces strains of oenological interest. Results showed the presence of six viruses and two satellite dsRNAs from four different families, two of which-Partitiviridae and Mitoviridae-were not reported before in yeasts, as well as two ORFan contigs of viral origin. According to phylogenetic analysis, four new putative mycoviruses distributed in Totivirus, Cryspovirus, and Mitovirus genera were identified. The majority of commercial S. cerevisiae strains were confirmed to be the host for helper L-A type totiviruses and satellite M dsRNAs associated with the killer phenotype, both in single and mixed infections with L-BC totiviruses, and two viral sequences belonging to a new cryspovirus putative species discovered here for the first time. Moreover, single infection by a narnavirus 20S-related sequence was also found in one S. cerevisiae strain. Considering the non-Saccharomyces yeasts, Starmerella bacillaris hosted four RNAs of viral origin-two clustering in Totivirus and Mitovirus genera, and two ORFans with putative satellite behavior. This study confirmed the infection of wine yeasts by viruses associated with useful technological characteristics and demonstrated the presence of complex mixed infections with unpredictable biological effects.
Collapse
Affiliation(s)
- Dalila Crucitti
- Dipartimento di Scienze Bio-Agroalimentari, Istituto di Bioscienze e BioRisorse (IBBR), C.N.R., Corso Calatafimi 414, 90129 Palermo, Italy; (F.C.); (F.L.B.)
- Correspondence: (D.C.); (D.P.); Tel.: +39-091-657-4578 (D.C.)
| | - Marco Chiapello
- Dipartimento di Scienze Bio-Agroalimentari, Istituto per la Protezione Sostenibile delle Piante (IPSP), C.N.R., Strada delle Cacce, 73, 10135 Torino, Italy; (M.C.); (M.F.); (M.T.)
| | - Daniele Oliva
- Istituto Regionale del Vino e dell’Olio (IRVO), Via Libertà 66, 90143 Palermo, Italy;
| | - Marco Forgia
- Dipartimento di Scienze Bio-Agroalimentari, Istituto per la Protezione Sostenibile delle Piante (IPSP), C.N.R., Strada delle Cacce, 73, 10135 Torino, Italy; (M.C.); (M.F.); (M.T.)
| | - Massimo Turina
- Dipartimento di Scienze Bio-Agroalimentari, Istituto per la Protezione Sostenibile delle Piante (IPSP), C.N.R., Strada delle Cacce, 73, 10135 Torino, Italy; (M.C.); (M.F.); (M.T.)
| | - Francesco Carimi
- Dipartimento di Scienze Bio-Agroalimentari, Istituto di Bioscienze e BioRisorse (IBBR), C.N.R., Corso Calatafimi 414, 90129 Palermo, Italy; (F.C.); (F.L.B.)
| | - Francesca La Bella
- Dipartimento di Scienze Bio-Agroalimentari, Istituto di Bioscienze e BioRisorse (IBBR), C.N.R., Corso Calatafimi 414, 90129 Palermo, Italy; (F.C.); (F.L.B.)
| | - Davide Pacifico
- Dipartimento di Scienze Bio-Agroalimentari, Istituto di Bioscienze e BioRisorse (IBBR), C.N.R., Corso Calatafimi 414, 90129 Palermo, Italy; (F.C.); (F.L.B.)
- Correspondence: (D.C.); (D.P.); Tel.: +39-091-657-4578 (D.C.)
| |
Collapse
|