1
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
2
|
Uncovering a Complex Virome Associated with the Cacao Pathogens Ceratocystis cacaofunesta and Ceratocystis fimbriata. Pathogens 2023; 12:pathogens12020287. [PMID: 36839559 PMCID: PMC9967352 DOI: 10.3390/pathogens12020287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Theobroma cacao is one of the main crops of economic importance in the world as the source of raw material for producing chocolate and derivatives. The crop is the main source of income for thousands of small farmers, who produce more than 80% of the world's cocoa supply. However, the emergence, re-emergence and proliferation of pathogens, such as Ceratocystis spp., the causative agent of Ceratocystis wilt disease and canker disease, have been affecting the sustainability of many crops. Fungal control is laborious, often depending on fungicides that are expensive and/or toxic to humans, prompting researchers to look for new solutions to counteract the proliferation of these pathogens, including the use of biological agents such as mycoviruses. In this study, we investigated the diversity of microorganisms associated with the T. cacao pathogens Ceratocystis cacaofunesta and Ceratocystis fimbriata with a focus on the virome using RNA sequencing data available in public databases. We used a comprehensive bioinformatics pipeline containing several steps for viral sequence enrichment and took advantage of an integrated assembly step composed of different assemblers followed by sequence similarity searches using NCBI nonredundant databases. Our strategy was able to identify four putative C. cacaofunesta viruses (hypovirus, sclerotimonavirus, alphapartitivirus and narnavirus) and six C. fimbriata viruses (three alphaendornaviruses, one victorivirus and two mitoviruses). All the viral sequences identified showed similarity to viral genomes in public databases only at the amino acid level, likely representing new viral species. Of note, we present the first report of viruses associated with the cacao pathogens C. cacaofunesta and C. fimbriata and the second report of viral species infecting members of the Ceratocystidaceae family. Our findings highlight the need for further prospective studies to uncover the real diversity of fungus-infecting viruses that can contribute to the development of new management strategies.
Collapse
|
3
|
Liang W, Lu Z, Duan J, Jiang D, Xie J, Cheng J, Fu Y, Chen T, Li B, Yu X, Chen W, Lin Y. A novel alphahypovirus that infects the fungal plant pathogen Sclerotinia sclerotiorum. Arch Virol 2021; 167:213-217. [PMID: 34826002 DOI: 10.1007/s00705-021-05315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
A novel positive single-stranded RNA virus, Sclerotinia sclerotiorum hypovirus 9 (SsHV9), was identified in the plant-pathogenic Sclerotinia sclerotiorum strain GB375, which was associated with a garden bean plant in the United States. The complete genome of SsHV9 is 14,067 nucleotides in length, excluding the poly(A) tail. It has a single large open reading frame encoding a putative polyprotein (4,196 amino acids), which is predicted to contain a papain-like protease, a protein of unknown function, an RNA-dependent RNA polymerase, and an RNA helicase. Phylogenetic analysis based on a multiple alignment of amino acid sequences of polyproteins that suggested SsHV9 belongs to the proposed genus "Alphahypovirus" in the family Hypoviridae.
Collapse
Affiliation(s)
- Weibo Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Zhongbo Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiasen Cheng
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weidong Chen
- US Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, Washington, 99164, USA
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
4
|
Abdoulaye AH, Hai D, Tang Q, Jiang D, Fu Y, Cheng J, Lin Y, Li B, Kotta-Loizou I, Xie J. Two distant helicases in one mycovirus: evidence of horizontal gene transfer between mycoviruses, coronaviruses and other nidoviruses. Virus Evol 2021; 7:veab043. [PMID: 34055389 PMCID: PMC8135808 DOI: 10.1093/ve/veab043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nidovirales, which accommodates viruses with the largest RNA genomes, includes the notorious coronaviruses; however, the evolutionary route for nidoviruses is not well understood. We have characterized a positive-sense (+) single-stranded (ss) RNA mycovirus, Rhizoctonia solani hypovirus 2 (RsHV2), from the phytopathogenic fungus Rhizoctonia solani. RsHV2 has the largest RNA genome size of 22,219 nucleotides, excluding the poly(A) tail, in all known mycoviruses, and contains two open reading frames (ORF1 and ORF2). ORF1 encodes a protein of 2,009 amino acid (aa) that includes a conserved helicase domain belonging to helicase superfamily I (SFI). In contrast, ORF2 encodes a polyprotein of 4459 aa containing the hallmark genes of hypoviruses. The latter includes a helicase belonging to SFII. Following phylogenetic analysis, the ORF1-encoded helicase (Hel1) unexpectedly clustered in an independent evolutionary branch together with nidovirus helicases, including coronaviruses, and bacteria helicases. Thus, Hel1 presence indicates the occurrence of horizontal gene transfer between viruses and bacteria. These findings also suggest that RsHV2 is most likely a recombinant arising between hypoviruses and nidoviruses.
Collapse
Affiliation(s)
- Assane Hamidou Abdoulaye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
| | - Qing Tang
- Xiangyang Academy of Agricultural Sciences, Xiangyang, Hubei Province, 441057, People’s Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People’s Republic of China
| |
Collapse
|
5
|
Zhou J, Hu X, Liang X, Wang Y, Xie C, Zheng L. Complete genome sequence of a novel mycovirus from Phoma matteucciicola. Arch Virol 2020; 166:317-320. [PMID: 33141334 DOI: 10.1007/s00705-020-04865-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023]
Abstract
The complete genome sequence of a novel mycovirus, Phoma matteucciicola RNA virus 1 (PmRV1), derived from Phoma matteucciicola strain LG-01, was sequenced and analyzed. The complete cDNA sequence of PmRV1 is 3432 bp in length with a GC content of 57.17%. The genome of PmRV1 contains two putative open reading frames (ORFs): ORF1 and ORF2. ORF1 encodes a hypothetical protein with significant similarity to a protein encoded by Periconia macrospinosa ambiguivirus 1 (PmAV1). ORF2 encodes a protein of 491 amino acids with a conserved RNA-dependent RNA polymerase (RdRp) domain. Additionally, the triad within domain III has an asparagine (GDN) instead of the nearly universally conserved aspartic acid (GDD). RdRp phylogeny showed that PmRV1 grouped together with PmAV1 as a sister branch of a new member of the recently proposed family of mycotombus-like viruses. This is first report of the complete sequence of a novel mycovirus, PmRV1, infecting Phoma matteucciicola strain LG-01, the causal agent of leaf blight of Curcuma wenyujin.
Collapse
Affiliation(s)
- Jia Zhou
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, 570228, Hainan, China
| | - Xiaochuan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, 570228, Hainan, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuhua Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, 570228, Hainan, China
| | - Changping Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, 570228, Hainan, China
| | - Li Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|