1
|
Zhao Y, Zhang X, Mu T, Wu X. Complete genome sequence of a novel partitivirus with a dsRNA3 segment, isolated from Fusarium commune strain CP-SX-3 causing strawberry root rot. Arch Virol 2024; 169:60. [PMID: 38430446 DOI: 10.1007/s00705-024-06004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
A novel partitivirus, Fusarium commune partitivirus 1 (FcoPV1), was identified in Fusarium commune strain CP-SX-3 isolated from diseased roots of strawberry with symptoms of root rot. The complete genome of FcoPV1 comprises three double-stranded RNAs (dsRNAs): dsRNA1 (1,825 nt), dsRNA2 (1,592 nt), and dsRNA3 (1,421 nt). dsRNA1 contains a single open reading frame (ORF1) encoding an RNA-dependent RNA polymerase (RdRp), and dsRNA2 contains a single ORF (ORF2) encoding a coat protein (CP). dsRNA3 is a possible satellite RNA that does not appear to encode a known protein. BLASTp analysis revealed that RdRp (86.59%) and CP (74.13%) encoded by the two ORFs (ORF1 and ORF2) had the highest sequence similarity to their counterparts in Fusarium equiseti partitivirus 1 (FePV1). Phylogenetic analysis based on the complete amino acid sequence of RdRp suggested that FcoPV1 should be considered a member of a new species in the proposed genus "Zetapartitivirus" within the family Partitiviridae. To the best of our knowledge, this is the first report of a zetapartitivirus infecting phytopathogenic F. commune.
Collapse
Affiliation(s)
- Yumeng Zhao
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
- Liaoning Institute of Pomology, Yingkou City, Liaoning, 115009, People's Republic of China
| | - Xinyi Zhang
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Tongyu Mu
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Xuehong Wu
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Jaccard A, Dubuis N, Kellenberger I, Brodard J, Schnee S, Gindro K, Schumpp O. New viruses of Cladosporium sp. expand considerably the taxonomic structure of Gammapartitivirus genus. J Gen Virol 2023; 104:001879. [PMID: 37549001 PMCID: PMC10539651 DOI: 10.1099/jgv.0.001879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Despite the fact that Cladosporium sp. are ubiquitous fungi, their viromes have been little studied. By analysing a collection of Cladosporium fungi, two new partitiviruses named Cladosporium cladosporioides partitivirus 1 (CcPV1) and Cladosporium cladosporioides partitivirus 2 (CcPV2) co-infecting a strain of Cladosporium cladosporioides were identified. Their complete genome consists of two monocistronic dsRNA segments (RNA1 and RNA2) with a high percentage of pairwise identity on 5' and 3' end. The RNA directed RNA polymerase (RdRp) of both viruses and the capsid protein (CP) of CcPV1 display the classic characteristics required for their assignment to the Gammapartitivirus genus. In contrast, CcPV2 RNA2 encodes for a 41 KDa CP that is unusually smaller when aligned to CPs of other viruses classified in this genus. The structural role of this protein is confirmed by electrophoresis on acrylamide gel of purified viral particles. Despite the low percentage of identity between the capsid proteins of CcPV1 and CcPV2, their three-dimensional structures predicted by AlphaFold2 show strong similarities and confirm functional proximity. Fifteen similar viral sequences of unknown function were annotated using the CcPV2 CP sequence. The phylogeny of the CP was highly consistent with the phylogeny of their corresponding RdRp, supporting the organization of Gammapartitiviruses into three distinct clades despite stretching the current demarcation criteria. It is proposed that a new subgenus be created within the genus Gammapartitivirus for this new group.
Collapse
Affiliation(s)
| | - Nathalie Dubuis
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | | | - Justine Brodard
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Sylvain Schnee
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Katia Gindro
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Olivier Schumpp
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| |
Collapse
|
3
|
Discovery, Genomic Sequence Characterization and Phylogenetic Analysis of Novel RNA Viruses in the Turfgrass Pathogenic Colletotrichum spp. in Japan. Viruses 2022; 14:v14112572. [PMID: 36423181 PMCID: PMC9698584 DOI: 10.3390/v14112572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Turfgrass used in various areas of the golf course has been found to present anthracnose disease, which is caused by Colletotrichum spp. To obtain potential biological agents, we identified four novel RNA viruses and obtained full-length viral genomes from turfgrass pathogenic Colletotrichum spp. in Japan. We characterized two novel dsRNA partitiviruses: Colletotrichum associated partitivirus 1 (CaPV1) and Colletotrichum associated partitivirus 2 (CaPV2), as well as two negative single-stranded (ss) RNA viruses: Colletotrichum associated negative-stranded RNA virus 1 (CaNSRV1) and Colletotrichum associated negative-stranded RNA virus 2 (CaNSRV2). Using specific RT-PCR assays, we confirmed the presence of CaPV1, CaPV2 and CaNSRV1 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-264, as well as CaNSRV2 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-288. This is the first time mycoviruses have been discovered in turfgrass pathogenic Colletotrichum spp. in Japan. CaPV1 and CaPV2 are new members of the newly proposed genus "Zetapartitivirus" and genus Alphapartitivirus, respectively, in the family Partitiviridae, according to genomic characterization and phylogenetic analysis. Negative sense ssRNA viruses CaNSRV1 and CaNSRV2, on the other hand, are new members of the family Phenuiviridae and the proposed family "Mycoaspirividae", respectively. These findings reveal previously unknown RNA virus diversity and evolution in turfgrass pathogenic Colletotrichum spp.
Collapse
|
4
|
Chen X, Yu Z, Sun Y, Yang M, Jiang N. Molecular characterization of a novel partitivirus isolated from Rhizoctonia solani. Front Microbiol 2022; 13:978075. [PMID: 36204602 PMCID: PMC9531756 DOI: 10.3389/fmicb.2022.978075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Rhizoctonia solani is a widely distributed plant pathogen that can damage many crops. Here, we identified a novel mycovirus tentatively named Rhizoctonia solani partitivirus 433 (RsPV433) from an R. solani (AG-3) strain which caused tobacco target spot disease on flue-cured tobacco. RsPV433 was consisted of two dsRNA segments with lengths of 2450 and 2273 bp, which encoded an RNA-dependent RNA polymerase and a coat protein, respectively. BLASTP results of RsPV433 showed that the closest relative of RsPV433 was Sarcosphaera coronaria partitivirus (QLC36830.1), with an identity of 60.85% on the RdRp amino sequence. Phylogenetic analysis indicated that RsPV433 belonged to the Betapartitivirus genus in the Partitiviridae family. The virus transmission experiment revealed that RsPV433 can be transmitted horizontally. We further tested the biological effect of RsPV433 on R. solani strains and found that the RsPV433-infected R. solani strain grew slower than the RsPV433-free strain on the PDA medium and RsPV433 seemed to have no obvious impact on the lesion inducing ability of R. solani.
Collapse
Affiliation(s)
- Xiangru Chen
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Zhaoyao Yu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Yujia Sun
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Meipeng Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Ning Jiang
- Agronomic Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- *Correspondence: Ning Jiang
| |
Collapse
|
5
|
Wang S, Ahmed I, Li X, Nie J, Guo L. Evidence for a novel partitivirus isolated from the entomopathogenic nematode Steinernema ceratophorum. Arch Virol 2022; 167:969-972. [PMID: 35112200 DOI: 10.1007/s00705-021-05314-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Nematodes are abundant, but little is known about their viruses. In this study, we report a novel partitivirus isolated from the entomopathogenic nematode species Steinernema ceratophorum, named "Steinernema ceratophorum partitivirus 1" (ScPV-1). The complete genome of ScPV-1 comprises two dsRNA segments, dsRNA1 (2352 bp) and dsRNA2 (2196 bp). Each dsRNA contains a single open reading frame (ORF), encoding a putative RNA-dependent RNA polymerase (RdRp) and a coat protein (CP), respectively. The sequences of the RdRp and CP showed the highest similarity (47% and 33% identity, respectively) to Plasmopara viticola associated partitivirus 7 (PvAP-7). A multiple sequence alignment and phylogenetic analysis of the RdRp of ScPV-1 and other selected viruses indicated that ScPV-1 is a new member of the genus Betapartitivirus in the family Partitiviridae.
Collapse
Affiliation(s)
- Shuangchao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Irfan Ahmed
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianhui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Nie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
6
|
Costa LC, Hu X, Malapi-Wight M, O'Connell M, Hendrickson LM, Turner RS, McFarland C, Foster J, Hurtado-Gonzales OP. Genomic characterization of silvergrass cryptic virus 1, a novel partitivirus infecting Miscanthus sinensis. Arch Virol 2021; 167:261-265. [PMID: 34757504 DOI: 10.1007/s00705-021-05294-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
In the present study we report the identification of a novel partitivirus recovered from Miscanthus sinensis, for which the provisional name "silvergrass cryptic virus 1" (SgCV-1) is proposed. High-throughput sequencing (HTS) and rapid amplification of cDNA ends (RACE) allowed the assembly of the complete sequence of each double-stranded RNA genome segment of this novel virus. The largest dsRNA segment, dsRNA1 (1699 bp), was predicted to encode a viral RNA-dependent RNA polymerase protein (RdRp) with 478 aa, and dsRNA2 (1490 bp) and dsRNA3 (1508 bp) were predicted to encode putative capsid proteins (CPs) with 347 and 348 aa, respectively. SgCV-1 has the highest amino acid sequence identity (≤ 70.80% in RdPp and ≤ 34.5% in CPs) to members of the genus Deltapartitivirus, family Partitiviridae, especially to unclassified viruses related to members of this genus. Its genome segment and protein lengths are also within the range of those of deltapartitiviruses. Moreover, phylogenetic analysis based on RdRp amino acid sequences also showed clustering of this novel virus with the related unclassified deltapartitiviruses. An RT-PCR survey of 94 imported M. sinensis samples held in quarantine identified seven additional samples carrying SgCV-1. This new virus fulfils all ICTV criteria to be considered a new member of the genus Deltapartitivirus.
Collapse
Affiliation(s)
- Larissa C Costa
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | - Xiaojun Hu
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | - Martha Malapi-Wight
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA.,USDA-APHIS, Biotechnology Regulatory Services, Biotechnology Risk Analysis Program, Riverdale, MD, USA
| | - Mary O'Connell
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | - Leticia M Hendrickson
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | - Roy S Turner
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | | | - Joseph Foster
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA
| | - Oscar P Hurtado-Gonzales
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), Beltsville, MD, USA.
| |
Collapse
|
7
|
Wan X, Zhao Y, Zhang Y, Wei C, Du H, Zhang H, Chen J, Yang L, Zang R, Wen C. Molecular characterization of a novel partitivirus isolated from the phytopathogenic fungus Aplosporella javeedii. Arch Virol 2021; 166:1237-1240. [PMID: 33560459 DOI: 10.1007/s00705-021-04988-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022]
Abstract
Aplosporella javeedii is a pathogenic fungus that causes canker and dieback of jujube in China. In this study, we report a new mycovirus, Aplosporella javeedii partitivirus 1 (AjPV1), isolated from A. javeedii strain NX55-3. The AjPV1 genome contains two double-stranded RNA elements (dsRNA1 and dsRNA2). The size of dsRNA1 is 2,360 bp, and it encodes a putative RNA-dependent RNA polymerase (RdRp), while dsRNA2 is 2,301 bp in length and encodes a putative capsid protein (CP). The sequences of RdRp and CP have significant similarity to those of members of the family Partitiviridae. Sequence alignment and phylogenetic analysis showed that AjPV1 is a new member of the family Partitiviridae that is related to members of the genus Betapartitivirus. To our knowledge, AjPV1 is the first mycovirus reported from A. javeedii.
Collapse
Affiliation(s)
- Xinru Wan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuanyuan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chenxing Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Hongyan Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Han Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jiahui Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lijie Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Rui Zang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|