1
|
Zhang Y, Wang N, Li J, Chen B, Kang Z, Song P, Zheng W. Complete genome sequence of a novel mitovirus identified in the phytopathogenic fungus Puccinia triticina. Arch Virol 2025; 170:90. [PMID: 40140110 DOI: 10.1007/s00705-025-06272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025]
Abstract
Wheat leaf rust is caused by the obligate biotrophic fungus Puccinia triticina f. sp. tritici, which seriously affects wheat production. In this study, a novel mitovirus was identified in Puccinia triticina strain HN-1 and designated as "Puccinia triticina mitovirus 1" (PtMV1). The genome of PtMV1 consists of a single RNA molecule with a length of 2,380 nt and an A + U content of 54.7% that contains a single open reading frame (ORF). The ORF is predicted to encode a putative RNA-dependent RNA polymerase (RdRp) of 653 amino acids with a molecular mass of 74.77 kDa, containing six conserved motifs. The RdRp amino acid sequence of PtMV1 has a high degree of sequence similarity to the RdRps of unuamitoviruses. Phylogenetic analysis indicated that PtMV1 is a new member of the genus Unuamitovirus within the family Mitoviridae. To our knowledge, this is the first report of a fungal virus in Puccinia triticina.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Nuoheng Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Jinyang Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Bingtao Chen
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pengyu Song
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
2
|
Duan J, Zhang A, Fu Y, Lin Y, Xie J, Cheng J, Chen T, Li B, Yu X, Lyu X, Jiang D. A Mycovirus Representing a Novel Lineage and a Mitovirus of Botrytis cinerea Co-Infect a Basidiomycetous Fungus, Schizophyllum commune. Viruses 2024; 16:1767. [PMID: 39599881 PMCID: PMC11598958 DOI: 10.3390/v16111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Strain IBc-114 was isolated from a gray mold lesion and was identified as the fungus Schizophyllum commune. In this strain, two mycoviruses, Schizophyllum commune RNA virus 1 (ScRV1, C_AA053475.1) and Botrytis cinerea mitovirus 9 strain IBc-114 (BcMV9/IBc-114, C_AA053476.1), were isolated and characterized. ScRV1 has flexuous filamentous particles about 20 ± 2.1 nm in diameter and 1000 ± 94.2 nm in length. The genome of ScRV1 is 7370 nt in length and contains two open reading frames (ORFs) which encode a polyprotein and a coat protein, respectively. The polyprotein has 1967 aa, including a helicase domain and an RdRp domain which has the highest identity of 28.21% with that of Entomophthora benyvirus E (EbVE). The coat protein has 241 aa which is mostly phylogenetically close to the coat proteins of Alphatetraviridae. Based on the phylogenetic analysis of ScRV1 and viruses selected, ScRV1 might represent a new family (temporarily named Mycobenyviridae) of the order Hepelivirales. The genome of BcMV9/IBc-114 that infects S. commune is 2729 nt in length and has only one ORF encoding an RdRp protein with 719 aa. BcMV9/IBc-114 has the highest identity of 98.61% with Botrytis cinerea mitovirus 9 (BcMV9) (MT089704). ScRV1, but not BcMV9/IBc-114, has certain effects on the host growth of S. commune. Furthermore, BcMV9/IBc-114 has been demonstrated to replicate in the ascomycetous fungi Botrytis cinerea and Sclerotinia sclerotiorum, and it negatively affects the growth and pathogenicity of B. cinerea, but it does not affect S. sclerotiorum. This is the first report of mycoviruses in S. commune and cross-phyla transmission of mitovirus in nature.
Collapse
Affiliation(s)
- Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Anmeng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| |
Collapse
|
3
|
Wu L, Wu Q, Cao J, Wu X, Yang M, Liu H. Molecular characterization of a novel mitovirus from the plant-pathogenic fungus Nigrospora oryzae. Arch Virol 2024; 169:181. [PMID: 39150574 DOI: 10.1007/s00705-024-06110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/06/2024] [Indexed: 08/17/2024]
Abstract
Here, we characterized a novel mitovirus from the fungus Nigrospora oryzae, which was named "Nigrospora oryzae mitovirus 3" (NoMV3). The NoMV3 genome is 2,492 nt in length with a G + C content of 33%, containing a single large open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF encodes an RNA-dependent RNA polymerase (RdRp) of 775 amino acids with a molecular mass of 88.75 kDa. BLASTp analysis revealed that the RdRp of NoMV3 had 68.6%, 50.6%, and 48.6% sequence identity to those of Nigrospora oryzae mitovirus 2, Suillus luteus mitovirus 6, and Fusarium proliferatum mitovirus 3, respectively, which belong to the genus Unuamitovirus within the family Mitoviridae. Phylogenetic analysis based on amino acid sequences supported the classification of NoMV3 as a member of a new species in the genus Unuamitovirus within the family Mitoviridae.
Collapse
Affiliation(s)
- Lei Wu
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Qinxiang Wu
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Jiwu Cao
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Xizhi Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Manguo Yang
- Forestry Bureau of Shuangpai County, Yongzhou, China
| | - Hong Liu
- College of Forestry, Central South University of Forestry and Technology, Changsha, China.
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China.
- Key Laboratory of National Forestry and Grassland Administration on Control of Artiffcial Forest Diseases and Pests, Changsha, China.
| |
Collapse
|
4
|
Yu D, Wang Q, Song W, Kang Y, Lei Y, Wang Z, Chen Y, Huai D, Wang X, Liao B, Yan L. Characterization of Two Novel Single-Stranded RNA Viruses from Agroathelia rolfsii, the Causal Agent of Peanut Stem Rot. Viruses 2024; 16:854. [PMID: 38932147 PMCID: PMC11209298 DOI: 10.3390/v16060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Peanut stem rot is a soil-borne disease caused by Agroathelia rolfsii. It occurs widely and seriously affects the peanut yield in most peanut-producing areas. The mycoviruses that induce the hypovirulence of some plant pathogenic fungi are potential resources for the biological control of fungal diseases in plants. Thus far, few mycoviruses have been found in A. rolfsii. In this study, two mitoviruses, namely, Agroathelia rolfsii mitovirus 1 (ArMV1) and Agroathelia rolfsii mitovirus 2 (ArMV2), were identified from the weakly virulent A. rolfsii strain GP3-1, and they were also found in other A. rolfsii isolates. High amounts of ArMV1 and ArMV2in the mycelium could reduce the virulence of A. rolfsii strains. This is the first report on the existence of mitoviruses in A. rolfsii. The results of this study may provide insights into the classification and evolution of mitoviruses in A. rolfsii and enable the exploration of the use of mycoviruses as biocontrol agents for the control of peanut stem rot.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Boshou Liao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agricultural and Rural Affairs, Wuhan 430062, China; (D.Y.); (Q.W.); (W.S.); (Y.K.); (Y.L.); (Z.W.); (Y.C.); (D.H.); (X.W.)
| | - Liying Yan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agricultural and Rural Affairs, Wuhan 430062, China; (D.Y.); (Q.W.); (W.S.); (Y.K.); (Y.L.); (Z.W.); (Y.C.); (D.H.); (X.W.)
| |
Collapse
|
5
|
Hua H, Zhang X, Yao Y, Wu X. Complete genome sequence of a novel mitovirus identified in the phytopathogenic fungus Fusarium oxysporum f. sp. melonis strain T-SD3. Arch Virol 2024; 169:126. [PMID: 38753067 DOI: 10.1007/s00705-024-06042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
A novel mitovirus was identified in Fusarium oxysporum f. sp. melonis strain T-SD3 and designated as "Fusarium oxysporum mitovirus 3" (FoMV3). The virus was isolated from diseased muskmelon plants with the typical symptom of fusarium wilt. The complete genome of FoMV3 is 2269 nt in length with a predicted AU content of 61.40% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a polypeptide of 679 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain with a molecular mass of 77.39 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5'-untranslated region (UTR) and 3'-UTR of FoMV3 were predicted to fold into stem-loop structures. BLASTp analysis revealed that the RdRp of FoMV3 shared the highest aa sequence identity (83.85%) with that of Fusarium asiaticum mitovirus 5 (FaMV5, a member of the family Mitoviridae) infecting F. asiaticum, the causal agent of wheat fusarium head blight. Phylogenetic analysis further suggested that FoMV3 is a new member of the genus Unuamitovirus within the family Mitoviridae. This is the first report of a new mitovirus associated with F. oxysporum f. sp. melonis.
Collapse
Affiliation(s)
- Huihui Hua
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Xinyi Zhang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Yilin Yao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
6
|
Comont G, Faure C, Candresse T, Laurens M, Valière S, Lluch J, Lefebvre M, Gambier S, Jolivet J, Corio-Costet MF, Marais A. Characterization of the RNA Mycovirome Associated with Grapevine Fungal Pathogens: Analysis of Mycovirus Distribution and Their Genetic Variability within a Collection of Botryosphaeriaceae Isolates. Viruses 2024; 16:392. [PMID: 38543758 PMCID: PMC10975779 DOI: 10.3390/v16030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Botryosphaeriaceae are fungi involved in the decay of various woody species, including the grapevine, leading to significant production losses. This fungal family is largely ubiquitous, and seven species of Botryosphaeriaceae have been identified in French vineyards, with variable levels of aggressiveness, both in vitro and in planta. Mycoviruses can impact the life traits of their fungal hosts, including aggressiveness, and are one of the factors influencing fungal pathogenicity. In this study, the RNA mycovirome of fifteen Botryosphaeriaceae isolates was characterized through the high-throughput sequencing of double-stranded RNA preparations from the respective samples. Eight mycoviruses were detected, including three potential novel species in the Narnaviridae family, as well as in the proposed Mycobunyaviridae and Fusagraviridae families. A large collection of Botryosphaeriaceae isolates was screened using RT-PCR assays specific for 20 Botryosphaeriaceae-infecting mycoviruses. Among the mycoviruses detected, some appeared to be specialists within a single host species, while others infected isolates belonging to multiple Botryosphaeriaceae species. This screening allowed us to conclude that one-third of the Botryosphaeriaceae isolates were infected by at least one mycovirus, and a significant proportion of isolates (43.5%) were found to be coinfected by several viruses, with very complex RNA mycoviromes for some N. parvum isolates.
Collapse
Affiliation(s)
- Gwenaëlle Comont
- UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, Plant Health Department, INRAE, 33140 Villenave d’Ornon, France; (G.C.); (M.L.); (S.G.); (J.J.)
| | - Chantal Faure
- UMR BFP, INRAE, University of Bordeaux, 33140 Villenave d’Ornon, France; (C.F.); (T.C.); (M.L.)
| | - Thierry Candresse
- UMR BFP, INRAE, University of Bordeaux, 33140 Villenave d’Ornon, France; (C.F.); (T.C.); (M.L.)
| | - Marie Laurens
- UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, Plant Health Department, INRAE, 33140 Villenave d’Ornon, France; (G.C.); (M.L.); (S.G.); (J.J.)
| | - Sophie Valière
- INRAE, US 1426, GeT-PlaGe, GenoToul, 31320 Castanet-Tolosan, France; (S.V.); (J.L.)
| | - Jérôme Lluch
- INRAE, US 1426, GeT-PlaGe, GenoToul, 31320 Castanet-Tolosan, France; (S.V.); (J.L.)
| | - Marie Lefebvre
- UMR BFP, INRAE, University of Bordeaux, 33140 Villenave d’Ornon, France; (C.F.); (T.C.); (M.L.)
| | - Sébastien Gambier
- UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, Plant Health Department, INRAE, 33140 Villenave d’Ornon, France; (G.C.); (M.L.); (S.G.); (J.J.)
| | - Jérôme Jolivet
- UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, Plant Health Department, INRAE, 33140 Villenave d’Ornon, France; (G.C.); (M.L.); (S.G.); (J.J.)
| | - Marie-France Corio-Costet
- UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, Plant Health Department, INRAE, 33140 Villenave d’Ornon, France; (G.C.); (M.L.); (S.G.); (J.J.)
| | - Armelle Marais
- UMR BFP, INRAE, University of Bordeaux, 33140 Villenave d’Ornon, France; (C.F.); (T.C.); (M.L.)
| |
Collapse
|
7
|
Ma K, Cai L, Wang R, Wang J, Zhan H, Ni H, Lu B, Zhang Y, Gao J. Complete genome sequence of a novel mitovirus isolated from the fungus Fusarium oxysporum f. sp. ginseng causing ginseng root rot. Arch Virol 2024; 169:53. [PMID: 38381240 DOI: 10.1007/s00705-024-05962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 02/22/2024]
Abstract
A novel mitovirus, tentatively designated as "Fusarium oxysporum mitovirus 2" (FoMV2), was isolated from the pathogenic Fusarium oxysporum f. sp. ginseng strain 0414 infecting Panax ginseng. The complete genome of FoMV2 is 2388 nt in length with a GC content of 30.57%. It contains a large open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) of 713 amino acids with a molecular weight of 83.05 kDa. The sequence identity between FoMV2 and Botrytis cinerea mitovirus 8 and Fusarium verticillioides mitovirus 1 was 87.94% and 77.85%, respectively. Phylogenetic analysis showed that FoMV2 belongs to the genus Unuamitovirus in the family Mitoviridae. To the best of our knowledge, this is the first report of an unuamitovirus isolated from F. oxysporum f. sp. ginseng causing ginseng root rot.
Collapse
Affiliation(s)
- Kaige Ma
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Liping Cai
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Ruojin Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Jun Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Haoxin Zhan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Hechi Ni
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Baohui Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, 130118, China
| | - Yanjing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, 130118, China.
| | - Jie Gao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, 130118, China.
| |
Collapse
|
8
|
Wen Y, Qu J, Zhang H, Yang Y, Huang R, Deng J, Zhang J, Xiao Y, Li J, Zhang M, Wang G, Zhai L. Identification and Characterization of a Novel Hypovirus from the Phytopathogenic Fungus Botryosphaeria dothidea. Viruses 2023; 15:2059. [PMID: 37896836 PMCID: PMC10611357 DOI: 10.3390/v15102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Many mycoviruses have been accurately and successfully identified in plant pathogenic fungus Botryosphaeria dothidea. This study discovered three mycoviruses from a B. dothidea strain SXD111 using high-throughput sequencing technology. A novel hypovirus was tentatively named Botryosphaeria dothidea hypovirus 1 (BdHV1/SXD111). The other two were known viruses, which we named Botryosphaeria dothidea polymycovirus 1 strain SXD111 (BdPmV1/SXD111) and Botryosphaeria dothidea partitivirus 1 strain SXD111 (BdPV1/SXD111). The genome of BdHV1/SXD111 is 11,128 nucleotides long, excluding the poly (A) tail. A papain-like cysteine protease (Pro), a UDP-glucose/sterol glucosyltransferase (UGT), an RNA-dependent RNA polyprotein (RdRp), and a helicase (Hel) were detected in the polyprotein of BdHV1/SXD111. Phylogenetic analysis showed that BdHV1/SXD111 was clustered with betahypovirus and separated from members of the other genera in the family Hypoviridae. The BdPmV1/SXD111 genome comprised five dsRNA segments with 2396, 2232, 1967, 1131, and 1060 bp lengths. Additionally, BdPV1/SXD111 harbored three dsRNA segments with 1823, 1623, and 557 bp lengths. Furthermore, the smallest dsRNA was a novel satellite component of BdPV1/SXD111. BdHV1/SXD111 could be transmitted through conidia and hyphae contact, whereas it likely has no apparent impact on the morphologies and virulence of the host fungus. Thus, this study is the first report of a betahypovirus isolated from the fungus B. dothidea. Importantly, our results significantly enhance the diversity of the B. dothidea viruses.
Collapse
Affiliation(s)
- Yongqi Wen
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jinyue Qu
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Honglin Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Yi Yang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Rui Huang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jili Deng
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jiayu Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Yanping Xiao
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jiali Li
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Meixin Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lifeng Zhai
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| |
Collapse
|
9
|
Zhang Y, Guo H, Zhou S, Chen D, Xu G, Kang Z, Zheng L. A Novel Mitovirus PsMV2 Facilitates the Virulence of Wheat Stripe Rust Fungus. Viruses 2023; 15:1265. [PMID: 37376565 DOI: 10.3390/v15061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Wheat stripe rust, caused by the obligate biotrophic fungus Puccinia striiformis f. sp. tritici (Pst), seriously affects wheat production. Here, we report the complete genome sequence and biological characterization of a new mitovirus from P. striiformis strain GS-1, which was designated as "Puccinia striiformis mitovirus 2" (PsMV2). Genome sequence analysis showed that PsMV2 is 2658 nt in length with an AU-rich of 52.3% and comprises a single ORF of 2348 nt encoding an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis indicated that PsMV2 is a new member of the genus Unuamitovirus within the family Mitoviridae. In addition, PsMV2 multiplied highly during Pst infection and it suppresses programmed cell death (PCD) triggered by Bax. Silencing of PsMV2 in Pst by barley stripe mosaic virus (BSMV)-mediated Host Induced Gene Silencing (HIGS) reduced fungal growth and decreased pathogenicity of Pst. These results indicate PsMV2 promotes host pathogenicity in Pst. Interestingly, PsMV2 was detected among a wide range of field isolates of Pst and may have coevolved with Pst in earlier times. Taken together, our results characterized a novel mitovirus PsMV2 in wheat stripe rust fungus, which promotes the virulence of its fungal host and wide distribution in Pst which may offer new strategies for disease control.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Hualong Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Siyu Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Daipeng Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Gang Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Li Zheng
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| |
Collapse
|
10
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
11
|
Fan Y, Liu K, Lu R, Gao J, Song W, Zhu H, Tang X, Liu Y, Miao M. Cell-Free Supernatant of Bacillus subtilis Reduces Kiwifruit Rot Caused by Botryosphaeria dothidea through Inducing Oxidative Stress in the Pathogen. J Fungi (Basel) 2023; 9:jof9010127. [PMID: 36675948 PMCID: PMC9862322 DOI: 10.3390/jof9010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Biological control of postharvest diseases has been proven to be an effective alternative to chemical control. As an environmentally friendly biocontrol agent, Bacillus subtilis has been widely applied. This study explores its application in kiwifruit soft rot and reveals the corresponding mechanisms. Treatment with cell-free supernatant (CFS) of Bacillus subtilis BS-1 significantly inhibits the mycelial growth of the pathogen Botryosphaeria dothidea and attenuates the pathogenicity on kiwifruit in a concentration-dependent manner. In particular, mycelial growth diameter was only 21% of the control after 3 days of treatment with 5% CFS. CFS caused swelling and breakage of the hyphae of B. dothidea observed by scanning electron microscopy, resulting in the leakage of nucleic acid and soluble protein and the loss of ergosterol content. Further analysis demonstrated that CFS significantly induces the expression of Nox genes associated with reactive oxygen species (ROS) production by 1.9-2.7-fold, leading to a considerable accumulation of ROS in cells and causing mycelial cell death. Our findings demonstrate that the biocontrol effect of B. subtilis BS-1 CFS on B. dothidea is realized by inducing oxidative damage to the mycelia cell.
Collapse
Affiliation(s)
- Yezhen Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Kui Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
- Institute of Botany, The Chinese Academy of Sciences, Beijing 230094, China
| | - Ruoxi Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Jieyu Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Wu Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Hongyan Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Xiaofeng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu 610064, China
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Min Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
- Correspondence:
| |
Collapse
|
12
|
He Y, Zou Q, Li S, Zhu H, Hong N, Wang G, Wang L. Molecular characterization of a new fusarivirus infecting Botryosphaeria dothidea, the causal agent of pear ring rot disease. Arch Virol 2022; 167:1893-1897. [PMID: 35668128 DOI: 10.1007/s00705-022-05492-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Here, a novel mycovirus, tentatively designated as "Botryosphaeria dothidea fusarivirus 2" (BdFV2), was discovered in Botryosphaeria dothidea strain JZ-3. The complete genome sequence is 6,271 nucleotides (nt) in length, excluding the poly(A) tail, and contains two putative open reading frames (ORFs). The larger ORF1 encodes a polypeptide of 1,552 amino acids (aa) with conserved RNA-dependent RNA polymerase (RdRp) domains and a viral helicase domain. The ORF1-encoded polypeptide shares 19.47-78.70% sequence identity with those of other fusariviruses and shares the highest sequence identity (78.70%) with the corresponding protein aa sequences of Neofusicoccum luteum fusarivirus 1 (NlFV1) isolate CBS110299. The small ORF2 encodes a hypothetical protein with 479 aa, which is predicted to contain a chromosome segregation protein SMC domain of unknown function. Sequence alignments and phylogenetic analysis indicated that BdFV2 is a distinct member of the recently established family Fusariviridae. BdFV2 appears to be a novel fusarivirus infecting a pathogenic B. dothidea strain that causes pear ring rot disease.
Collapse
Affiliation(s)
- Ying He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Qi Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Shanshan Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Haodong Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China.
| |
Collapse
|
13
|
Molecular characterization of a novel victorivirus isolated from Botryosphaeria dothidea, the causal agent of longan leaf spot disease. Arch Virol 2022; 167:2417-2422. [PMID: 35962824 DOI: 10.1007/s00705-022-05573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
Mycoviruses are widespread in all major taxonomic groups of filamentous fungi. Previous research has indicated that mycoviruses are associated with the phytopathogenic fungus Botryosphaeria dothidea. In this study, three distinct double-stranded RNA viruses were detected in B. dothidea strain YCLYY11 isolated from a leaf spot of longan (Dimocarpus longana). The results of BLAST analysis revealed that the predicted amino acid sequences of those viruses were similar to those of Botryosphaeria dothidea chrysovirus 1, Botryosphaeria dothidea partitivirus 1, and an apparent novel victorivirus. Sequencing and analysis of the complete genome of the novel victorivirus indicated it is 5218 bp in length and contains two open reading frames (ORFs) that overlap at the tetranucleotide AUGA. BLASTp analysis of the proteins encoded by ORF1 and ORF2 showed that they were most similar to the coat protein and RNA-dependent RNA polymerase of Sphaeropsis sapinea RNA virus 2 (81.37% and 74.09% identical, respectively). A phylogenetic tree showed that the novel virus clustered together with victoriviruses and was separate from members of the other four genera of the family Totiviridae. Based on its genome structure and the results of phylogenetic analysis, we propose that this novel victorivirus should be named "Botryosphaeria dothidea victorivirus 3". This is also the first report of these three mycoviruses coinfecting a strain of B. dothidea.
Collapse
|
14
|
Six Novel Mycoviruses Containing Positive Single-Stranded RNA and Double-Stranded RNA Genomes Co-Infect a Single Strain of the Rhizoctoniasolani AG-3 PT. Viruses 2022; 14:v14040813. [PMID: 35458543 PMCID: PMC9025235 DOI: 10.3390/v14040813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Six novel mycoviruses that collectively represent the mycovirome of Rhizoctonia solani anastomosis group (AG)-3 PT strain ZJ-2H, which causes potato black scurf, were identified through metatranscriptome sequencing and putatively designated as Rhizoctonia solani fusarivirus 4 [RsFV4, positive single-stranded RNA (+ssRNA)], Rhizoctonia solani fusarivirus 5 (RsFV5, +ssRNA), Rhizoctonia solani mitovirus 40 (RsMV40, +ssRNA), Rhizoctonia solani partitivirus 10 [RsPV10, double-stranded RNA (dsRNA)], Rhizoctonia solani partitivirus 11 (RsPV11, dsRNA), and Rhizoctonia solani RNA virus 11 (RsRV11, dsRNA). Whole genome sequences of RsFV4, RsMV40, RsPV10, RsPV11, and RsRV11, as well as a partial genome sequence of RsFV5, were obtained. The 3'- and 5'- untranslated regions of the five mycoviruses with complete genome sequences were folded into stable stem-loop or panhandle secondary structures. RsFV4 and RsFV5 are most closely related to Rhizoctonia solani fusarivirus 1 (RsFV1), however, the first open reading frame (ORF) of RsFV4 and RsFV5 encode a hypothetical protein that differs from the first ORF of RsFV1, which encodes a helicase. We confirmed that RsPV10 and RsPV11 assemble into the spherical virus particles (approximately 30 nm in diameter) that were extracted from strain ZJ-2H. This is the first report that +ssRNA and dsRNA viruses co-infect a single strain of R. solani AG-3 PT.
Collapse
|
15
|
Characterization of a Novel Mycovirus from the Phytopathogenic Fungus Botryosphaeria dothidea. Viruses 2022; 14:v14020331. [PMID: 35215923 PMCID: PMC8879742 DOI: 10.3390/v14020331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
Botryosphaeria dothidea is, globally, one of the most economically important phytopathogenic fungi worldwide, causing the canker and dieback of fruit trees. An increasing number of viruses infecting B. dothidea have lately been reported, several of which could confer hypovirulence. In this study, isolated from strain ZM170285-1 of B. dothidea, a novel double-stranded RNA (dsRNA) mycovirus, tentatively named Botryosphaeria dothidea partitivirus 2 (BdPV2), was identified well. The BdPV2 harbored three dsRNA segments (1–3) with lengths of 1751, 1568, and 1198 bp, which encoded an RNA-dependent RNA polymerase (RdRp), a capsid protein (CP), and a hypothetical protein of unknown function, respectively. BLASTp searches revealed that the predicted protein sequences of dsRNA1 and dsRNA2 had the highest identities (74.95% and 61.01%) with the corresponding dsRNAs of Penicillium stoloniferum virus S (PsV-S), whereas dsRNA3 shared the highest identity (32.95%) with the dsRNA3 of Aspergillus ochraceous virus 1 (AoV1). Phylogenetic analysis indicated that BdPV2 belonged to the Gammapartitivirus genus and Partitiviridae family. To our knowledge, this is the first report of a gammapartitivirus in B. dothidea.
Collapse
|
16
|
Shafik K, Umer M, You H, Aboushedida H, Wang Z, Ni D, Xu W. Characterization of a Novel Mitovirus Infecting Melanconiella theae Isolated From Tea Plants. Front Microbiol 2021; 12:757556. [PMID: 34867881 PMCID: PMC8635788 DOI: 10.3389/fmicb.2021.757556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
A dsRNA segment was identified in the fungus Melanconiella theae isolated from tea plants. The complete dsRNA sequence, determined by random cloning together with RACE protocol, is 2,461 bp in length with an AU-rich content (62.37%) and comprises a single ORF of 2,265-nucleotides encoding an RNA-dependent RNA-polymerase (RdRp, 754 amino acids in size). The terminus sequences can fold into predicted stable stem-loop structures. A BLASTX and phylogenetic analysis revealed the dsRNA genome shows similarities with the RdRp sequences of mitoviruses, with the highest identity of 48% with those of grapevine-associated mitovirus 20 and Colletotrichum fructicola mitovirus 1. Our results reveal a novel member, tentatively named Melanconiella theae mitovirus 1 (MtMV1), belongs to the family Mitoviridae. MtMV1 is capsidless as examined by transmission electron microscope, efficiently transmitted through conidia as 100 conidium-generated colonies were analyzed, and easily eliminated by hyphal tipping method combined with green-leaf tea powder. MtMV1 has a genomic sequence obviously divergent from those of most members in the family Mitoviridae and some unique characteristics unreported in known members. This is the first report of a mycovirus infecting Melanconiella fungi to date.
Collapse
Affiliation(s)
- Karim Shafik
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Umer
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huafeng You
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hamdy Aboushedida
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenhua Wang
- Technology Center of Wuhan Customs District, Wuhan, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wenxing Xu
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Zou Q, Gao Y, Wang Q, Yang Y, Wang F, Hong N, Wang G, Wang L. The full-length genome sequence of a novel mitovirus from Botryosphaeria dothidea, the causal agent of pear ring rot disease. Arch Virol 2021; 166:2881-2885. [PMID: 34338875 DOI: 10.1007/s00705-021-05189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 10/20/2022]
Abstract
Here, we describe a novel mycovirus, tentatively designated as "Botryosphaeria dothidea mitovirus 3" (BdMV3), isolated from Botryosphaeria dothidea strain FJ, which causes pear ring rot disease in Fujian Province, China. The complete genome nucleotide sequence of BdMV3 is 2538 nt in length and contains a single 2070-nt open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) of 689 amino acids (aa) using the fungal mitochondrial genetic code. BLASTp analysis revealed that the RdRp of BdMV3 shares 28.91%-69.36% sequence identity (query sequence coverage more than 90%) with those of members of the genus Mitovirus, with the highest sequence identity of 69.36% and 68.79% to the corresponding RdRp aa sequences of Rhizoctonia solani mitovirus 10 and Macrophomina phaseolina mitovirus 4, respectively. Phylogenetic analysis based on RdRp aa sequences indicated that BdMV3 is a new member of the genus Mitovirus in the family Mitoviridae.
Collapse
Affiliation(s)
- Qi Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Yunjing Gao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Qiong Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Yuekun Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Fang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China. .,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
18
|
Wang H, Liu H, Lu X, Wang Y, Zhou Q. A novel mitovirus isolated from the phytopathogenic fungus Botryosphaeria dothidea. Arch Virol 2021; 166:1507-1511. [PMID: 33683472 DOI: 10.1007/s00705-021-05023-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/18/2021] [Indexed: 12/01/2022]
Abstract
In this study, we isolated and determined the complete genome sequence of a novel mitovirus, "Botryosphaeria dothidea mitovirus 2" (BdMV2), from the phytopathogenic fungus Botryosphaeria dothidea isolate DT-5. BdMV2 has a genome 2,482 nt in length with an A+U content of 67%. The genome of BdMV2 contains a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) of 717 amino acids (aa) with a molecular mass of 81.86 kDa. A BLASTp comparison of the RdRp sequence showed the highest identity (66.67%) with that of Alternaria arborescens mitovirus 1 (AbMV1). Sequence comparisons and phylogenetic analysis revealed that BdMV2 is a new member of the genus Mitovirus of the family Mitoviridae.
Collapse
Affiliation(s)
- Hui Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Hong Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Xun Lu
- Agricultural Science Institute of XiangXi Tujia and Miao Autonomous Prefecture, Xiangxi, 416000, People's Republic of China
| | - YunSheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Characterization of the Mycovirome of the Phytopathogenic Fungus, Neofusicoccum parvum. Viruses 2021; 13:v13030375. [PMID: 33673510 PMCID: PMC7997348 DOI: 10.3390/v13030375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023] Open
Abstract
Neofusicoccum parvum is a fungal plant-pathogen belonging to the family Botryosphaeriaceae, and is considered one of the most aggressive causal agents of the grapevine trunk disease (GTD) Botryosphaeria dieback. In this study, the mycovirome of a single strain of N. parvum (COLB) was characterized by high throughput sequencing analysis of total RNA and subsequent bioinformatic analyses. Contig annotations, genome completions, and phylogenetic analyses allowed us to describe six novel mycoviruses belonging to four different viral families. The virome is composed of two victoriviruses in the family Totiviridae, one alphaendornavirus in the family Endornaviridae, two mitoviruses in the family Mitoviridae, and one narnavirus belonging to the family Narnaviridae. The presence of the co-infecting viruses was confirmed by sequencing the RT-PCR products generated from total nucleic acids extracted from COLB. This study shows that the mycovirome of a single N. parvum strain is highly diverse and distinct from that previously described in N. parvum strains isolated from grapevines.
Collapse
|
20
|
A novel mycovirus isolated from the plant-pathogenic fungus Botryosphaeria dothidea. Arch Virol 2021; 166:1267-1272. [PMID: 33598815 DOI: 10.1007/s00705-021-04983-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022]
Abstract
A novel virus, Botryosphaeria dothidea bipartite mycovirus 1 (BdBMV1), was isolated from the plant-pathogenic fungus Botryosphaeria dothidea strain HNDT1, and the complete nucleotide sequence of its genome was determined. BdBMV1 consists of two genomic segments. The first segment is 1,976 bp in length and contains a single open reading frame (ORF) encoding the RNA-dependent RNA polymerase (RdRp) (68.95 kDa). The second segment is 1,786 bp in length and also contains a single ORF encoding a hypothetical protein of 35.19 kDa of unknown function. Based on the sequence of its RdRp, BdBMV1 is phylogenetically related to several other unclassified dsRNA mycoviruses, including Cryphonectria parasitica bipartite mycovirus 1 (CpBV1), and has a distant relationship to members of the family Partitiviridae.
Collapse
|