1
|
Li H, Lin C, Qi W, Sun Z, Xie Z, Jia W, Ning Z. Senecavirus A-induced glycolysis facilitates virus replication by promoting lactate production that attenuates the interaction between MAVS and RIG-I. PLoS Pathog 2023; 19:e1011371. [PMID: 37126525 PMCID: PMC10174517 DOI: 10.1371/journal.ppat.1011371] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/11/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Senecavirus A (SVA)-induced porcine idiopathic vesicular disease has caused huge economic losses worldwide. Glucose metabolism in the host cell is essential for SVA proliferation; however, the impact of the virus on glucose metabolism in host cells and the subsequent effects are still unknown. Here, glycolysis induced by SVA is shown to facilitate virus replication by promoting lactate production, which then attenuates the interaction between the mitochondrial antiviral-signaling protein (MAVS) and retinoic acid-inducible gene I (RIG-I). SVA induces glycolysis in PK-15 cells, as indicated by significantly increased expression of hexokinase 2 (HK2), 6-phosphofructokinase (PFKM), pyruvate kinase M (PKM), phosphoglycerate kinase 1 (PGK1), hypoxia-inducible factor-1 alpha (HIF-1α), and superoxide dismutase-2 (SOD2) in a dose-and replication-dependent manner, and enhanced lactate production, while reducing ATP generation. Overexpression of PKM, PGK1, HIF-1α, and PDK3 in PK-15 cells and high glucose concentrations promote SVA replication, while glycolytic inhibitors decrease it. Inhibition of RLR signaling allowed better replication of SVA by promoting lactate production to attenuate the interaction between MAVS and RIG-I, and regulatory effect of glycolysis on replication of SVA was mainly via RIG-I signaling. SVA infection in mice increased expression of PKM and PGK1 in tissues and serum yields of lactate. Mice treated with high glucose and administered sodium lactate showed elevated lactate levels and better SVA replication, as well as suppressed induction of RIG-I, interferon beta (IFNβ), IFNα, interferon-stimulated gene 15 (ISG15), and interleukin 6 (IL-6). The inhibitory effect on interferons was lower in mice administered sodium oxamate and low glucose compared to the high glucose, indicating that RLR signaling was inhibited by SVA infection through lactate in vitro and in vivo. These results provide a new perspective on the relationship between metabolism and innate immunity of the host in SVA infection, suggesting that glycolysis or lactate may be new targets against the virus.
Collapse
Affiliation(s)
- Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Cunhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - ZhenZhen Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhenxin Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weixin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
2
|
Gupta R, Arora K, Roy SS, Joseph A, Rastogi R, Arora NM, Kundu PK. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front Immunol 2023; 14:1123805. [PMID: 36845125 PMCID: PMC9947793 DOI: 10.3389/fimmu.2023.1123805] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Viral infectious diseases threaten human health and global stability. Several vaccine platforms, such as DNA, mRNA, recombinant viral vectors, and virus-like particle-based vaccines have been developed to counter these viral infectious diseases. Virus-like particles (VLP) are considered real, present, licensed and successful vaccines against prevalent and emergent diseases due to their non-infectious nature, structural similarity with viruses, and high immunogenicity. However, only a few VLP-based vaccines have been commercialized, and the others are either in the clinical or preclinical phases. Notably, despite success in the preclinical phase, many vaccines are still struggling with small-scale fundamental research owing to technical difficulties. Successful production of VLP-based vaccines on a commercial scale requires a suitable platform and culture mode for large-scale production, optimization of transduction-related parameters, upstream and downstream processing, and monitoring of product quality at each step. In this review article, we focus on the advantages and disadvantages of various VLP-producing platforms, recent advances and technical challenges in VLP production, and the current status of VLP-based vaccine candidates at commercial, preclinical, and clinical levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Prabuddha K. Kundu
- Department of Research and Development, Premas Biotech Pvt Ltd., Sector IV, Industrial Model Township (IMT), Manesar, Gurgaon, India
| |
Collapse
|
3
|
Ren X, Qian P, Hu Z, Chen H, Li X. Genetic characterization of atypical porcine pestivirus from neonatal piglets with congenital tremor in Hubei province, China. Virol J 2022; 19:51. [PMID: 35331281 PMCID: PMC8944037 DOI: 10.1186/s12985-022-01780-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Atypical porcine pestivirus (APPV) is a single-stranded RNA virus with high genetic variation that causes congenital tremor (CT) in newborn piglets, belonging to the genus Pestivirus of the family Flaviviridae. Increasing cases of APPV infection in China in the past few years would pose severe challenges to the development of pig production. In view of the high genetic variability of APPV, the genetic characteristics of APPV in Hubei province was determined. Methods 52 tissue samples from 8 CT-affected newborn piglets were collected at two different periods in the same pig farm in Hubei province. Viral nucleic acid was extracted to detect pathogens that can cause CT in piglets or other common clinical pathogens by RT-PCR. Haematoxylin and eosin (HE) staining, immunohistochemical (IHC) analysis, and qRT-PCR were performed to observe histopathological changes and histological distribution, and detect the viral load of APPV in CT-affected piglets. The full-length genome of APPV was obtained and sequence analysis was conducted to determine the phylogenetic relationship. Results Histopathological observation and histological distribution analysis showed that the histological lesions and distribution of APPV were mainly in central nervous system (CNS) tissues and immune tissues. Viral load analysis revealed that the viral copy number was higher in the cerebellum, submaxillary lymph nodes, tonsil, and serum than in other tissues. Phylogenetic analysis showed that CH-HB2020 and CH-HB2021 belonged to Clade I.3, and is most closely related to APPV_CH-GX2016. Sequence alignment based on APPV encoding sequences (CDS) showed that the nucleotide identities of CH-HB2020 or CH-HB2021 with Clade I, Clade II, and Clade III strains were 83.5–98.6%, 83.1–83.5%, and 81.1–81.4%, respectively, while the amino acid identities were 91.9–99.2%, 91.2–95.3%, and 90.77–91.4%, respectively. No recombination event was observed in CH-HB2020 or CH-HB2021 strains. Conclusions These findings enhance our understanding of the pathogenesis of APPV and may provide potential molecular evidence for its prevalence and transmission. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01780-8.
Collapse
Affiliation(s)
- Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zihui Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Ren X, Qian P, Liu S, Chen H, Li X. Fc-Mediated E2-Dimer Subunit Vaccines of Atypical Porcine Pestivirus Induce Efficient Humoral and Cellular Immune Responses in Piglets. Viruses 2021; 13:v13122443. [PMID: 34960713 PMCID: PMC8703287 DOI: 10.3390/v13122443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Congenital tremor (CT) type A-II in piglets is caused by an emerging atypical porcine pestivirus (APPV), which is prevalent in swine herds and a serious threat to the pig production industry. This study aimed to construct APPV E2 subunit vaccines fused with Fc fragments and evaluate their immunogenicity in piglets. Here, APPV E2Fc and E2ΔFc fusion proteins expressed in Drosophila Schneider 2 (S2) cells were demonstrated to form stable dimers in SDS-PAGE and western blotting assays. Functional analysis revealed that aE2Fc and aE2ΔFc fusion proteins could bind to FcγRI on antigen-presenting cells (APCs), with the affinity of aE2Fc to FcγRI being higher than that of aE2ΔFc. Moreover, subunit vaccines based on aE2, aE2Fc, and aE2ΔFc fusion proteins were prepared, and their immunogenicity was evaluated in piglets. The results showed that the Fc fusion proteins emulsified with the ISA 201VG adjuvant elicited stronger humoral and cellular immune responses than the IMS 1313VG adjuvant. These findings suggest that APPV E2 subunit vaccines fused with Fc fragments may be a promising vaccine candidate against APPV.
Collapse
Affiliation(s)
- Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shudan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87282608
| |
Collapse
|