1
|
Pagnoni S, Oufensou S, Balmas V, Bulgari D, Gobbi E, Forgia M, Migheli Q, Turina M. A collection of Trichoderma isolates from natural environments in Sardinia reveals a complex virome that includes negative-sense fungal viruses with unprecedented genome organizations. Virus Evol 2023; 9:vead042. [PMID: 37692893 PMCID: PMC10491862 DOI: 10.1093/ve/vead042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 09/12/2023] Open
Abstract
Trichoderma genus includes soil-inhabiting fungi that provide important ecosystem services in their interaction with plants and other fungi, as well as biocontrol of fungal plant diseases. A collection of Trichoderma isolates from Sardinia has been previously characterized, but here we selected 113 isolates, representatives of the collection, and characterized their viral components. We carried out high-throughput sequencing of ribosome-depleted total RNA following a bioinformatics pipeline that detects virus-derived RNA-directed RNA polymerases (RdRps) and other conserved viral protein sequences. This pipeline detected seventeen viral RdRps with two of them corresponding to viruses already detected in other regions of the world and the remaining fifteen representing isolates of new putative virus species. Surprisingly, eight of them are from new negative-sense RNA viruses, a first in the genus Trichoderma. Among them is a cogu-like virus, closely related to plant-infecting viruses. Regarding the positive-sense viruses, we report the presence of an 'ormycovirus' belonging to a recently characterized group of bisegmented single-stranded RNA viruses with uncertain phylogenetic assignment. Finally, for the first time, we report a bisegmented member of Mononegavirales which infects fungi. The proteins encoded by the second genomic RNA of this virus were used to re-evaluate several viruses in the Penicillimonavirus and Plasmopamonavirus genera, here shown to be bisegmented and encoding a conserved polypeptide that has structural conservation with the nucleocapsid domain of rhabdoviruses.
Collapse
Affiliation(s)
- Saul Pagnoni
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, via Celoria 2, Milan 20133, Italy
| | - Safa Oufensou
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Virgilio Balmas
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Daniela Bulgari
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Emanuela Gobbi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| | - Quirico Migheli
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| |
Collapse
|
2
|
Liu C, Jiang X, Tan Z, Wang R, Shang Q, Li H, Xu S, Aranda MA, Wu B. An Outstandingly Rare Occurrence of Mycoviruses in Soil Strains of the Plant-Beneficial Fungi from the Genus Trichoderma and a Novel Polymycoviridae Isolate. Microbiol Spectr 2023; 11:e0522822. [PMID: 37022156 PMCID: PMC10269472 DOI: 10.1128/spectrum.05228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/31/2023] [Indexed: 04/07/2023] Open
Abstract
In fungi, viral infections frequently remain cryptic causing little or no phenotypic changes. It can indicate either a long history of coevolution or a strong immune system of the host. Some fungi are outstandingly ubiquitous and can be recovered from a great diversity of habitats. However, the role of viral infection in the emergence of environmental opportunistic species is not known. The genus of filamentous and mycoparasitic fungi Trichoderma (Hypocreales, Ascomycota) consists of more than 400 species, which mainly occur on dead wood, other fungi, or as endo- and epiphytes. However, some species are environmental opportunists because they are cosmopolitan, can establish in a diversity of habitats, and can also become pests on mushroom farms and infect immunocompromised humans. In this study, we investigated the library of 163 Trichoderma strains isolated from grassland soils in Inner Mongolia, China, and found only four strains with signs of the mycoviral nucleic acids, including a strain of T. barbatum infected with a novel strain of the Polymycoviridae and named and characterized here as Trichoderma barbatum polymycovirus 1 (TbPMV1). Phylogenetic analysis suggested that TbPMV1 was evolutionarily distinct from the Polymycoviridae isolated either from Eurotialean fungi or from the order Magnaportales. Although the Polymycoviridae viruses were also known from Hypocrealean Beauveria bassiana, the phylogeny of TbPMV1 did not reflect the phylogeny of the host. Our analysis lays the groundwork for further in-depth characterization of TbPMV1 and the role of mycoviruses in the emergence of environmental opportunism in Trichoderma. IMPORTANCE Although viruses infect all organisms, our knowledge of some groups of eukaryotes remains limited. For instance, the diversity of viruses infecting fungi-mycoviruses-is largely unknown. However, the knowledge of viruses associated with industrially relevant and plant-beneficial fungi, such as Trichoderma spp. (Hypocreales, Ascomycota), may shed light on the stability of their phenotypes and the expression of beneficial traits. In this study, we screened the library of soilborne Trichoderma strains because these isolates may be developed into bioeffectors for plant protection and sustainable agriculture. Notably, the diversity of endophytic viruses in soil Trichoderma was outstandingly low. Only 2% of 163 strains contained traces of dsRNA viruses, including the new Trichoderma barbatum polymycovirus 1 (TbPMV1) characterized in this study. TbPMV1 is the first mycovirus found in Trichoderma. Our results indicate that the limited data prevent the in-depth study of the evolutionary relationship between soilborne fungi and is worth further investigation.
Collapse
Affiliation(s)
- Chenchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiliang Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaoyan Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongqun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Hongrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin, China
| | - Shujin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin, China
| | - Miguel A. Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| | - Beilei Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Wang R, Liu C, Jiang X, Tan Z, Li H, Xu S, Zhang S, Shang Q, Deising HB, Behrens SE, Wu B. The Newly Identified Trichoderma harzianum Partitivirus (ThPV2) Does Not Diminish Spore Production and Biocontrol Activity of Its Host. Viruses 2022; 14:1532. [PMID: 35891512 PMCID: PMC9317543 DOI: 10.3390/v14071532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
A new partititvirus isolated from a Trichoderma harzianum strain (T673), collected in China, was characterized and annotated as Trichoderma harzianum partitivirus 2 (ThPV2). The genome of ThPV2 consists of a 1693 bp dsRNA1 encoding a putative RNA-dependent RNA polymerase (RdRp) and a 1458 bp dsRNA2 encoding a hypothetical protein. In comparative studies employing the ThPV2-infected strain (T673) and a strain cured by ribavirin treatment (virus-free strain T673-F), we investigated biological effects of ThPV2 infection. While the growth rate of the virus-infected fungus differed little from that of the cured variant, higher mycelial density, conidiospore, and chlamydospore production were observed in the virus-infected strain T673. Furthermore, both the ThPV2-infected and the cured strain showed growth- and development-promoting activities in cucumber plants. In vitro confrontation tests showed that strains T673 and T673-F inhibited several important fungal pathogens and an oomycete pathogen in a comparable manner. Interestingly, in experiments with cucumber seeds inoculated with Fusarium oxysporum f. sp. cucumerinum, the ThPV2-infected strain T673 showed moderately but statistically significantly improved biocontrol activity when compared with strain T673-F. Our data broaden the spectrum of known mycoviruses and provide relevant information for the development of mycoviruses for agronomic applications.
Collapse
Affiliation(s)
- Rongqun Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Chenchen Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Xiliang Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Zhaoyan Tan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Hongrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300392, China
| | - Shujin Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300392, China
| | - Shuaihu Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China;
| | - Holger B. Deising
- Institute for Agricultural and Nutritional Sciences, Section Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany;
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany;
| | - Beilei Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| |
Collapse
|