1
|
Evseev PV, Sukhova AS, Tkachenko NA, Skryabin YP, Popova AV. Lytic Capsule-Specific Acinetobacter Bacteriophages Encoding Polysaccharide-Degrading Enzymes. Viruses 2024; 16:771. [PMID: 38793652 PMCID: PMC11126041 DOI: 10.3390/v16050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.
Collapse
Affiliation(s)
- Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasia S. Sukhova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| | - Nikolay A. Tkachenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Yuriy P. Skryabin
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| | - Anastasia V. Popova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| |
Collapse
|
2
|
Evseev PV, Shneider MM, Kolupaeva LV, Kasimova AA, Timoshina OY, Perepelov AV, Shpirt AM, Shelenkov AA, Mikhailova YV, Suzina NE, Knirel YA, Miroshnikov KA, Popova AV. New Obolenskvirus Phages Brutus and Scipio: Biology, Evolution, and Phage-Host Interaction. Int J Mol Sci 2024; 25:2074. [PMID: 38396752 PMCID: PMC10888812 DOI: 10.3390/ijms25042074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Two novel virulent phages of the genus Obolenskvirus infecting Acinetobacter baumannii, a significant nosocomial pathogen, have been isolated and studied. Phages Brutus and Scipio were able to infect A. baumannii strains belonging to the K116 and K82 capsular types, respectively. The biological properties and genomic organization of the phages were characterized. Comparative genomic, phylogenetic, and pangenomic analyses were performed to investigate the relationship of Brutus and Scipio to other bacterial viruses and to trace the possible origin and evolutionary history of these phages and other representatives of the genus Obolenskvirus. The investigation of enzymatic activity of the tailspike depolymerase encoded in the genome of phage Scipio, the first reported virus infecting A. baumannii of the K82 capsular type, was performed. The study of new representatives of the genus Obolenskvirus and mechanisms of action of depolymerases encoded in their genomes expands knowledge about the diversity of viruses within this taxonomic group and strategies of Obolenskvirus-host bacteria interaction.
Collapse
Affiliation(s)
- Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.S.); (O.Y.T.); (K.A.M.)
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (L.V.K.); (A.A.K.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Mikhail M. Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.S.); (O.Y.T.); (K.A.M.)
| | - Lyubov V. Kolupaeva
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (L.V.K.); (A.A.K.)
| | - Anastasia A. Kasimova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (L.V.K.); (A.A.K.)
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.P.); (A.M.S.); (Y.A.K.)
| | - Olga Y. Timoshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.S.); (O.Y.T.); (K.A.M.)
| | - Andrey V. Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.P.); (A.M.S.); (Y.A.K.)
| | - Anna M. Shpirt
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.P.); (A.M.S.); (Y.A.K.)
| | - Andrey A. Shelenkov
- Central Scientific Research Institute of Epidemiology, 111123 Moscow, Russia (Y.V.M.)
| | - Yulia V. Mikhailova
- Central Scientific Research Institute of Epidemiology, 111123 Moscow, Russia (Y.V.M.)
| | - Natalia E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, Moscow Region, 142290 Pushchino, Russia;
| | - Yuriy A. Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.P.); (A.M.S.); (Y.A.K.)
| | - Konstantin A. Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.S.); (O.Y.T.); (K.A.M.)
| | - Anastasia V. Popova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (L.V.K.); (A.A.K.)
| |
Collapse
|
3
|
Wang C, Wang Q, Mi Z, Zhao L, Bai C. Genomic analysis of K47-type Klebsiella pneumoniae phage IME305, a newly isolated member of the genus Teetrevirus. Arch Virol 2023; 168:280. [PMID: 37889322 DOI: 10.1007/s00705-023-05900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/05/2023] [Indexed: 10/28/2023]
Abstract
We isolated a K47-type Klebsiella pneumoniae phage from untreated hospital sewage: vB_KpnP_IME305 (GenBank no. OK149215). Next-generation sequencing (NGS) demonstrated that IME305 has a double-stranded DNA genome of 38,641 bp with 50.9% GC content. According to BLASTn comparisons, the IME305 genome sequence shares similarity with that of Klebsiella phage 6998 (97.37% identity and 95% coverage). IME305 contains 45 open reading frames (ORFs) and no rRNA, tRNA, or virulence-related gene sequences. Bioinformatic analysis showed that IME305 belongs to the phage subfamily Studiervirinae and genus Teetrevirus.
Collapse
Affiliation(s)
- Can Wang
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, No.99 Huang Shan road, Yingzhou District Anhui province, 236000, Fuyang city, China
| | - Qiang Wang
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, No.99 Huang Shan road, Yingzhou District Anhui province, 236000, Fuyang city, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Lei Zhao
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, No.99 Huang Shan road, Yingzhou District Anhui province, 236000, Fuyang city, China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China.
| | - Changqing Bai
- Department of Respiratory and Critical Care Diseases, the fifth Medical Center, Chinese PLA General Hospital (Former 307th Hospital of PLA), No. 8 Dongda Street, Fengtai District, 100071, Beijing, China.
- Department of Respiratory and Critical Care Diseases, General Hospital of Shenzhen University, 518060, Guangdong province, China.
| |
Collapse
|