1
|
Yang C, Bai X, Yang L, Zhang S, Cao M. Complete genome sequence of a new virga-like virus identified in Viburnum opulus in China. Arch Virol 2025; 170:59. [PMID: 39954175 DOI: 10.1007/s00705-025-06244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
A virga-like virus, provisionally named "Viburnum opulus virus 1" (VoV1), was identified by RNA-seq in a Viburnum opulus plant. The monopartite genome of VoV1 is 12,538 nucleotides (nt) in length, excluding the poly(A) tail, and contains seven open reading frames (ORF1-7). The genome organization most closely resembles those of two unclassified plant-infecting virga-like viruses (rubber tree latent virus 1 and 2), which also have seven ORFs but show sequence similarity to VoV1 in only three ORFs. ORF1 is the largest ORF and is predicted to encode a large protein containing six conserved structural domains, including one for the viral replicase. Putative proteins of ORF3 and ORF4 both contain CP-like motifs, while putative proteins encoded by the other ORFs were not identified. Sequence comparisons showed that VoV1 shared the highest nucleotide and amino acid (aa) sequence similarity in ORF1 with rose latent virus 1 (45.0/28.7 identity). Phylogenetic analysis based on the amino acid sequence of the protein encoded by ORF1 showed that VoV1 grouped with some other virga-like viruses in a distinct clade. Analysis of the sequence of VoV1 suggested that it should be classified as a member of a new species within the family Virgaviridae, for which we propose the name "Virgavirus viburnii".
Collapse
Affiliation(s)
- Caixia Yang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, 110044, Dadong, Shenyang, Liaoning, China.
| | - Xue Bai
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, 110044, Dadong, Shenyang, Liaoning, China
| | - Lei Yang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, 110044, Dadong, Shenyang, Liaoning, China
| | - Song Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, National Citrus Engineering and Technology Research Center, Southwest University, Tiansheng Road, 400712, Beibei, Chongqing, China
| | - Mengji Cao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, National Citrus Engineering and Technology Research Center, Southwest University, Tiansheng Road, 400712, Beibei, Chongqing, China
| |
Collapse
|
2
|
Jiao G, Ye Z, Feng K, Zhang C, Chen J, Li J, He Y. Discovery of Two Novel Viruses of the Willow-Carrot Aphid, Cavariella aegopodii. Viruses 2024; 16:919. [PMID: 38932211 PMCID: PMC11209057 DOI: 10.3390/v16060919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The advancement of bioinformatics and sequencing technology has resulted in the identification of an increasing number of new RNA viruses. This study systematically identified the RNA virome of the willow-carrot aphid, Cavariella aegopodii (Hemiptera: Aphididae), using metagenomic sequencing and rapid amplification of cDNA ends (RACE) approaches. C. aegopodii is a sap-sucking insect widely distributed in Europe, Asia, North America, and Australia. The deleterious effects of C. aegopodii on crop growth primarily stem from its feeding activities and its role as a vector for transmitting plant viruses. The virome includes Cavariella aegopodii virga-like virus 1 (CAVLV1) and Cavariella aegopodii iflavirus 1 (CAIV1). Furthermore, the complete genome sequence of CAVLV1 was obtained. Phylogenetically, CAVLV1 is associated with an unclassified branch of the Virgaviridae family and is susceptible to host antiviral RNA interference (RNAi), resulting in the accumulation of a significant number of 22nt virus-derived small interfering RNAs (vsiRNAs). CAIV1, on the other hand, belongs to the Iflaviridae family, with vsiRNAs ranging from 18 to 22 nt. Our findings present a comprehensive analysis of the RNA virome of C. aegopodii for the first time, offering insights that could potentially aid in the future control of the willow-carrot aphid.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yujuan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China (J.C.); (J.L.)
| |
Collapse
|
3
|
Yuan X, Liu Z, Guo M, Jin H, Wang X, Liu Y. Genomic and biological characteristics of a novel leafhopper-transmitted marafivirus infecting Triticum aestivum. Arch Virol 2024; 169:80. [PMID: 38519825 DOI: 10.1007/s00705-024-06011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
Here, we report a novel wheat-infecting marafivirus, tentatively named "Triticum aestivum marafivirus" (TaMRV). The full-length genome sequence of TaMRV comprises 6,437 nucleotides, excluding the poly(A) tail. Pairwise sequence comparisons and phylogenetic analysis revealed that TaMRV may represent a novel species within the genus Marafivirus in the family Tymoviridae. We also observed a mass of isometric particles with a diameter of about 30 nm in ultrathin sections of infected wheat leaf tissue. In addition, the leafhopper Psammotettix alienus was identified as a vector for this virus. This is the first report of the occurrence of a wheat-infecting marafivirus.
Collapse
Affiliation(s)
- Xiaoyu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhiyuan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengyue Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huaibing Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Zhao YJ, Hosoya T, Urayama S, Hagiwara D. Seven new mycoviruses identified from isolated ascomycetous macrofungi. Virus Res 2024; 339:199290. [PMID: 38043725 PMCID: PMC10751708 DOI: 10.1016/j.virusres.2023.199290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Mycoviruses have been described in all major fungal taxonomic groups. There has been much focus on commercially cultivated basidiomycetous macrofungi, while attention to viruses from ascomycetous macrofungi is lacking. Therefore, in this study, we conducted viral screening against fungal mycelia that were regenerated from ascomycetous macrofungi using agarose gel electrophoresis (AGE) and fragmented and primer-ligated dsRNA sequencing (FLDS). Among the 57 isolates, four isolates were detected with virus-like bands through screening with AGE, and subsequent FLDS analyses determined the viral sequences. Other isolates without virus-like bands in AGE were pooled to check for viral sequences. Using FLDS analysis, a total of seven new mycoviruses were identified, including two double-stranded RNA (dsRNA) viruses belonging to Quadriviridae and Partitiviridae, five positive-sense single-stranded RNA (ssRNA) viruses (three belonging to Mitoviridae, one belonging to Endornaviridae and one belonging to Virgaviridae). All viruses characterized in this study are novel species, and all the hosts are firstly reported to be infected by mycoviruses. These findings expand our knowledge of the diversity of mycoviruses from macrofungi in natural environments.
Collapse
Affiliation(s)
- Yan-Jie Zhao
- Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Tsuyoshi Hosoya
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Syunichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
5
|
Guo J, Yin J, Hu H, Zhang T, Ye Z, Yang J, Liu H, Chen J, Liu J. Molecular characterization of a novel benyvirus infecting wheat in China. Arch Virol 2023; 168:284. [PMID: 37930401 DOI: 10.1007/s00705-023-05912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
In this study, a novel positive single-stranded RNA (+ ssRNA) virus named wheat yellow stripe associated virus (WYSAV) was identified in wheat plants in China. Molecular characterization revealed that the complete genome of WYSAV is divided into two segments, RNA1 and RNA2, which are 6,460 and 4,935 nucleotides (nt) in length, excluding their respective poly(A) tails. RNA1 contains one large opening reading frame (ORF), encoding a replication-associated protein. RNA2 contains six ORFs, encoding a coat protein (CP), a coat protein readthrough domain protein (CP-RTD), triple gene block protein 1 (TGB1), triple gene block protein 2 (TGB2), triple gene block protein 3 (TGB3), and a cysteine-rich protein (CRP). Phylogenetic analysis showed that WYSAV is related to members of the genus Benyvirus in the family Benyviridae. Thus, WYSAV is proposed to be a new member of the genus Benyvirus. Wheat (Triticum aestivum L.) is one of the most important food crops and ranked third in the world in terms of production, only behind rice and maize [1]. During its growth cycle, wheat faces several biotic and abiotic stresses. Wheat soil-borne virus disease is an important disease that is difficult to control and causes severe yield loss in China each year [2]. The main pathogens causing wheat soil-borne virus disease are Chinese wheat mosaic virus (CWMV) and wheat yellow mosaic virus (WYMV), and their transmission vector is Polymyxa graminis [3-5]. Members of the viral family Benyviridae usually have two to five genomic RNA segments and are transmitted by root-infecting vectors belonging to the family "Plasmodiophoridae". Although few members of the family Benyviridae, of which beet necrotic yellow vein virus is the type member, have been identified [6], several recently identified viruses have been found to be phylogenetically related to benyviruses but are not classified as members of the family Benyviridae. These "unclassified benyviruses" include red clover RNA virus 1, Arceuthobium sichuanense virus 3, Dactylorhiza hatagirea beny-like virus, goji berry chlorosis virus [7], Guiyang benyvirus 1, Guiyang benyvirus 2, Mangifera indica latent virus [8], Rhizoctonia solani beny-like virus 1 [9], Sanya benyvirus 1 [10], and Sclerotium rolfsii beny-like virus 1 [11].In this study, we identified a novel + ssRNA virus in symptomatic leaf samples collected from cultivated wheat in the city of Zhumadian, Henan Province, China. We propose to name this virus "wheat yellow stripe associated virus" (WYSAV), and we have deposited its full-length sequence in the GenBank database under the accession numbers OQ547804 (RNA1) and OQ547805 (RNA2).
Collapse
Affiliation(s)
- Jun Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jingliang Yin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haichao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhuangxin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hanhong Liu
- Junan County Bureau of Agriculture and Country, Linyi, 276000, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Jiaqian Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|