1
|
Huang Y, Li S, Ye W, Wang H, Su J, Gao L, Shi R, Mou X, Leng SX, Xiao C, Chen G. Viral Infections in Elderly Individuals: A Comprehensive Overview of SARS-CoV-2 and Influenza Susceptibility, Pathogenesis, and Clinical Treatment Strategies. Vaccines (Basel) 2025; 13:431. [PMID: 40333344 PMCID: PMC12031201 DOI: 10.3390/vaccines13040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
As age increases, the immune function of elderly individuals gradually decreases, increasing their susceptibility to infectious diseases. Therefore, further research on common viral infections in the elderly population, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses, is crucial for scientific progress. This review delves into the genetic structure, infection mechanisms, and impact of coinfections with these two viruses and provides a detailed analysis of the reasons for the increased susceptibility of elderly individuals to dual viral infections. We evaluated the clinical manifestations in elderly individuals following coinfections, including complications in the respiratory, gastrointestinal, nervous, and cardiovascular systems. Ultimately, we have summarized the current strategies for the prevention, diagnosis, and treatment of SARS-CoV-2 and influenza coinfections in older adults. Through these studies, we aim to reduce the risk of dual infections in elderly individuals and provide a scientific basis for the prevention, diagnosis, and treatment of age-related viral diseases, thereby improving their health status.
Collapse
Affiliation(s)
- Yanhao Huang
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), School of Medicine, Jinan University, Dongguan 523000, China;
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wenjie Ye
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Haoyun Wang
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou 510632, China;
| | - Lijuan Gao
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ruohu Shi
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xinyi Mou
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Sean Xiao Leng
- Johns Hopkins Center on Aging and Immune Remodeling, Division of Geriatric Medicine and Gerontology, Departments of Medicine, Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Chanchan Xiao
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), School of Medicine, Jinan University, Dongguan 523000, China;
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai 519070, China
| | - Guobing Chen
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), School of Medicine, Jinan University, Dongguan 523000, China;
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai 519070, China
| |
Collapse
|
2
|
Contes KM, Liu BM. Epidemiology, Clinical Significance, and Diagnosis of Respiratory Viruses and Their Co-Infections in the Post-COVID Era. Pathogens 2025; 14:262. [PMID: 40137747 PMCID: PMC11944763 DOI: 10.3390/pathogens14030262] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel human coronavirus, emerged in late 2019 and rapidly evolved into a pandemic around the world. The coronavirus disease (COVID-19) pandemic has dramatically changed the epidemiology and seasonality of other traditional respiratory viruses, e.g., influenza, respiratory syncytial virus, enterovirus, etc. These traditional respiratory viruses have transmission mode and clinical symptoms similar to SARS-CoV-2 but may differ in clinical outcomes and management. Co-infection between SARS-CoV-2 and one or more traditional respiratory viruses have been reported in the literature but have shown mixed evidence in clinical outcomes. With SARS-CoV-2 evolving into mild Omicron variants, it is believed that SARS-CoV-2 co-circulates with other respiratory viruses, which in turn affect the epidemiology and clinical course of respiratory viral infections. In response to these changes, multiplex molecular tests for SARS-CoV-2 and one or more traditional respiratory viruses are attracting more attention in the field and have been developed into a variety of testing modalities. In this review, we describe the seasonality (i.e., in the Northern Hemisphere), epidemiology, and clinical significance of traditional respiratory viruses and their co-infection with SARS-CoV-2 in the post-COVID era. Furthermore, we review commonly used multiplex molecular tests and their applications for the detection of respiratory viruses and their co-infections. Altogether, this review not only sheds light on the epidemiology and clinical significance of respiratory viral infections and co-infections in the post-COVID era, and but also provides insights into the laboratory-based diagnoses of respiratory viral infections using multiplex molecular testing.
Collapse
Affiliation(s)
- Kaia M. Contes
- Department of Biology, Howard University, Washington, DC 20059, USA;
| | - Benjamin M. Liu
- Division of Pathology and Laboratory Medicine, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- The District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
3
|
Alshamrani M, Farahat F, Albarrak A, El-Saed A, Shibl AM, Memish ZA, Mousa M, Haridy H, Althaqafi A. Narrative review of factors associated with SARS-CoV-2 coinfection in Middle Eastern countries and the need to vaccinate against preventable diseases. J Infect Public Health 2025; 18:102600. [PMID: 39689411 DOI: 10.1016/j.jiph.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
This review evaluated the frequency of, and outcomes associated with, bacterial, fungal, and viral coinfection with SARS-CoV-2 in Middle Eastern countries via a PubMed search through February 2023. Ninety articles reported bacterial (n = 57), fungal (n = 32), and viral (n = 32) coinfections. High frequencies of coinfection with COVID-19 were identified, with rates and outcomes varying by setting, pathogen, surveillance/detection method, population characteristics, and drug-resistance status. Mortality rates were higher in patients with community-acquired (10.0 -42.9 %) and hospital-acquired (51.5 -66 %) bacterial coinfection versus those without (10.5 -21.7 %). Outcomes were worse with than without fungal coinfection, and fatality rates with mucormycosis coinfection reached 66.7 %. Outcomes with viral coinfection were highly variable; however, some data suggested a positive corelation between COVID-19 severity and influenza A and adenovirus coinfection. The negative outcomes associated with bacterial, fungal and some viral coinfections in individuals with COVID-19 support regular vaccination against vaccine-preventable diseases caused by these pathogens, especially among at-risk populations.
Collapse
Affiliation(s)
- Majid Alshamrani
- Infection Prevention and Control Program, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Riyadh 11426, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia.
| | - Fayssal Farahat
- Infection Prevention and Control Program, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Riyadh 11426, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia.
| | - Ali Albarrak
- Infectious Disease Division, Internal Medicine Department, Prince Sultan Military Medical City, King Abdulaziz Street, Alwazarat Area, Riyadh 11165, Saudi Arabia.
| | - Aiman El-Saed
- Infection Prevention and Control Program, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Riyadh 11426, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia.
| | - Atef M Shibl
- Alfaisal University, College of Medicine, P.O. Box 50927, Riyadh 11533, Saudi Arabia.
| | - Ziad A Memish
- Alfaisal University, College of Medicine, P.O. Box 50927, Riyadh 11533, Saudi Arabia; King Salman Humanitarian Aid & Relief Center, King Abdullah Road, Riyadh 12371, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Mostafa Mousa
- Pfizer Medical Affairs, King Abdullah Financial District Building 4.07, 13519 Riyadh, Saudi Arabia.
| | - Hammam Haridy
- Pfizer Medical & Scientific Affairs, Pfizer Building 6, Dubai, United Arab Emirates.
| | - Abdulhakeem Althaqafi
- Adult Infectious Diseases, Department of Internal Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 9515, Jeddah 21423, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, P.O. Box 9515, Jeddah 21423, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, P.O. Box 9515, Jeddah 21423, Saudi Arabia.
| |
Collapse
|
4
|
Stincarelli MA, Arvia R, Guidotti B, Giannecchini S. Respiratory Virus-Specific and Time-Dependent Interference of Adenovirus Type 2, SARS-CoV-2 and Influenza Virus H1N1pdm09 During Viral Dual Co-Infection and Superinfection In Vitro. Viruses 2024; 16:1947. [PMID: 39772252 PMCID: PMC11680187 DOI: 10.3390/v16121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Understanding the interference patterns of respiratory viruses could be important for shedding light on potential strategies to combat these human infectious agents. OBJECTIVE To investigate the possible interactions between adenovirus type 2 (AdV2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/H1N1 pandemic (H1N1pdm09) using the A549 cell line. METHODS Single infections, co-infections, and superinfections (at 3 and 24 h after the first virus infection) were performed by varying the multiplicity of infection (MOI). Virus replication kinetics and the mRNA expression of IFN-α, IL-1α and IL-6 were assessed by real-time qPCR. RESULTS Co-infection experiments showed different growth dynamics, depending on the presence of the specific virus and time. AdV2 replication remained stable or possibly enhanced in the presence of co-infection with each of the two H1N1pdm09 and SARS-CoV-2 viruses used. In contrast, SARS-CoV-2 replication was facilitated by H1N1pdm09 but hindered by AdV2, indicating possible different interactions. Finally, H1N1pdm09 replication exhibited variably effectiveness in the presence of AdV2 and SARS-CoV-2. Superinfection experiments showed that the replication of all viruses was affected by time and MOI. The mRNA expression of IFN-α, IL-1α and IL-6 showed divergent results depending on the virus used and the time of infection. CONCLUSIONS Further investigation of co-infection or superinfection may be helpful in understanding the potential relationship involved in the outcome of viral respiratory infection in the human population.
Collapse
Affiliation(s)
| | | | | | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134 Florence, Italy; (M.A.S.); (R.A.); (B.G.)
| |
Collapse
|
5
|
Weber DJ, Zimmerman KO, Tartof SY, McLaughlin JM, Pather S. Risk of COVID-19 in Children throughout the Pandemic and the Role of Vaccination: A Narrative Review. Vaccines (Basel) 2024; 12:989. [PMID: 39340021 PMCID: PMC11435672 DOI: 10.3390/vaccines12090989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
At the beginning of the coronavirus disease 2019 (COVID-19) pandemic, persons ≥65 years of age and healthcare personnel represented the most vulnerable groups with respect to risk of infection, severe illness, and death. However, as the pandemic progressed, there was an increasingly detrimental effect on young children and adolescents. Severe disease and hospitalization increased over time in pediatric populations, and containment measures created substantial psychosocial, educational, and economic challenges for young people. Vaccination of children against COVID-19 has been shown to reduce severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and severe outcomes in pediatric populations and may also help to prevent the spread of variants of concern and improve community immunity. This review discusses the burden of COVID-19 on children throughout the pandemic, the role of children in disease transmission, and the impact of COVID-19 vaccination.
Collapse
Affiliation(s)
- David J Weber
- Division of Infectious Diseases, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kanecia O Zimmerman
- Duke Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sara Y Tartof
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91107, USA
| | | | - Shanti Pather
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| |
Collapse
|
6
|
Mosadegh M, Jalili S, Pourmand MR, Erfani Y, Panji M. Evaluating the efficiency of ELISA, monoplex and multiplex probe-based real-time reverse-transcription PCR assays in the detection of SARS-CoV-2 (COVID-19) and influenza A and B viruses: A cross-sectional study. Health Sci Rep 2024; 7:e2140. [PMID: 38915351 PMCID: PMC11194474 DOI: 10.1002/hsr2.2140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Background and Aims The current study aimed to evaluate the efficiency of Enzyme-linked immunosorbent assay (ELISA) assay and monoplex and multiplex real-time reverse-transcription PCR (rRT-PCR) in the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A and B viruses (Flu A and Flu B). Methods The SARS-CoV-2 -specific IgG and IgM antibodies, as well as, Flu A (H1N1 and H3N2 serotypes) and Flu B virus antibodies were determined by ELISA assay. The one-step qRT-PCR method was used to detect the SARS-CoV-2 in nasopharyngeal swab samples. Furthermore, the presence of Flu A and B viruses was evaluated using probe-based RT-PCR. Simultaneous detection of SARS-CoV-2, Flu A and B viruses was performed by multiplex rRT-PCR assay. Results SARS CoV-2 IgM and IgG antibodies were detected in 33.3% and 58.3% of patients, respectively. In contrast, the SARS CoV-2 genome was detected in 50% of patients using the one-step monoplex RT-PCR assay. Flu A serotypes H1N1 and H3N2 were found in 16.7% and 8.3% of patients. Probe-based RT-PCR revealed that 39.3% of patients were positive for the Flu A virus. Multiplex rRT-PCR detect the SARS-CoV-2, Flu A, and Flu B in 50%, 39.3%, and 19% of samples, respectively. The sensitivity and specificity of multiplex rRT-PCR assay in comparison to monoplex RT-PCR were 100% and 55%, respectively. Coinfection with SARS-CoV-2, Flu A, and Flu B viruses was found in 9.5% of patients. Conclusion Multiplex rRT-PCR can be used as a repaid, cost-effective and suitable tool for molecular surveillance of SARS-CoV-2 and Flu A/B viruses.
Collapse
Affiliation(s)
- Mehrdad Mosadegh
- Department of Pathobiology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Shirin Jalili
- Institute of Police Equipment and TechnologiesPolicing Sciences and Social Studies Research InstituteTehranIran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical SciencesTehran University of Medical SciencesTehranIran
| | - Mohammad Panji
- Research Center for Life and Health Sciences and Biotechnology for the Police, Directorate of Health, Rescue and TreatmentPolice HeadquarterTehranIran
| |
Collapse
|
7
|
Liang J, Wang Y, Lin Z, He W, Sun J, Li Q, Zhang M, Chang Z, Guo Y, Zeng W, Liu T, Zeng Z, Yang Z, Hon C. Influenza and COVID-19 co-infection and vaccine effectiveness against severe cases: a mathematical modeling study. Front Cell Infect Microbiol 2024; 14:1347710. [PMID: 38500506 PMCID: PMC10945002 DOI: 10.3389/fcimb.2024.1347710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/20/2024] Open
Abstract
Background Influenza A virus have a distinctive ability to exacerbate SARS-CoV-2 infection proven by in vitro studies. Furthermore, clinical evidence suggests that co-infection with COVID-19 and influenza not only increases mortality but also prolongs the hospitalization of patients. COVID-19 is in a small-scale recurrent epidemic, increasing the likelihood of co-epidemic with seasonal influenza. The impact of co-infection with influenza virus and SARS-CoV-2 on the population remains unstudied. Method Here, we developed an age-specific compartmental model to simulate the co-circulation of COVID-19 and influenza and estimate the number of co-infected patients under different scenarios of prevalent virus type and vaccine coverage. To decrease the risk of the population developing severity, we investigated the minimum coverage required for the COVID-19 vaccine in conjunction with the influenza vaccine, particularly during co-epidemic seasons. Result Compared to the single epidemic, the transmission of the SARS-CoV-2 exhibits a lower trend and a delayed peak when co-epidemic with influenza. Number of co-infection cases is higher when SARS-CoV-2 co-epidemic with Influenza A virus than that with Influenza B virus. The number of co-infected cases increases as SARS-CoV-2 becomes more transmissible. As the proportion of individuals vaccinated with the COVID-19 vaccine and influenza vaccines increases, the peak number of co-infected severe illnesses and the number of severe illness cases decreases and the peak time is delayed, especially for those >60 years old. Conclusion To minimize the number of severe illnesses arising from co-infection of influenza and COVID-19, in conjunction vaccinations in the population are important, especially priority for the elderly.
Collapse
Affiliation(s)
- Jingyi Liang
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yangqianxi Wang
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zhijie Lin
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Wei He
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jiaxi Sun
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Qianyin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingyi Zhang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zichen Chang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yinqiu Guo
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wenting Zeng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tie Liu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhiqi Zeng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Zifeng Yang
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Chitin Hon
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Sabastin M, Mone K, Manivel A, Cherayi Padinakarai A, Krishnasamy K. Epidemic profile of common respiratory viruses in association SARS CoV-2 among SARI and ARI-two year study. Mol Biol Rep 2024; 51:156. [PMID: 38252354 DOI: 10.1007/s11033-023-09084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND COVID-19/SARS CoV-2 continue to pose a threat to human health and placed millions of livelihoods at risk. Surveillance for the other circulating seasonal viruses during this pandemic is necessary to understand the manifestations of the CoV-2 pandemic and their incidence. METHODS A detailed study survey was performed on subjects with acute respiratory infections (ARI) and severe acute respiratory infection (SARI) in the King Institute of Preventive Medicine and Research, Chennai from April 2020 to March 2022. A total of 1480 patients presenting with either SARI (41.8%) or ARI (58.1%) were screened for SARS CoV-2 and other respiratory viruses. The SARS CoV-2 real-time PCR was carried out using ICMR-approved kits and other respiratory viruses were detected using the commercially available real-time kit. RESULTS Out of the 620 SARI patients, 198 (31.9%) were positive for SARS CoV-2 RNA. Out of the 860 ARI patients, 352 (40.9%) were positive for SARS CoV-2 RNA. Among the 550 patients positive for SARS CoV-2, 7 (1.2%) were positive coexistent with other respiratory viruses. Among the 930 patients with negative SARS CoV-2, 222 (23.8%) were positive for other common respiratory viruses (p = 0.001). Influenza viruses (36.9%) predominated followed by RSV (31.9%) and Parainfluenza virus (13.5%). CONCLUSION This study suggests that viral coinfections are significantly higher among SARS CoV-2 negative individuals (23.8 vs. 1.2%). It is possibly due to viral interference and the competitive advantage of SARS CoV-2 in modulating the host immunity. Continuous surveillance is necessary for understanding the viral co-infection mechanisms.
Collapse
Affiliation(s)
- Merlin Sabastin
- Department of Virology, King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - Kiruthiga Mone
- Department of Virology, King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | - ArunKumar Manivel
- Department of Virology, King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India
| | | | - Kaveri Krishnasamy
- Department of Virology, King Institute of Preventive Medicine and Research, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Wu CY, Tseng YC, Kao SE, Wu LY, Hou JT, Yang YC, Hsiao PW, Chen JR. Monoglycosylated SARS-CoV-2 receptor binding domain fused with HA stem-scaffolded protein vaccine confers broad protective immunity against SARS-CoV-2 and influenza viruses. Antiviral Res 2023; 220:105759. [PMID: 37984568 DOI: 10.1016/j.antiviral.2023.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
The SARS-CoV-2 and influenza pandemics have posed a devastating threat to global public health. The best strategy for preventing the further spread of these respiratory viruses worldwide is to administer a vaccine capable of targeting both viruses. Here, we show that a novel monoglycosylated vaccine designed based on the influenza virus HAstem conserved domain fused with the SARS-CoV-2 spike-RBD domain (HSSRmg) can present proper antigenicity that elicits sufficient neutralization efficacy against various SARS-CoV-2 variants while simultaneously providing broad protection against H1N1 viruses in mice. Compared with the fully glycosylated HSSR (HSSRfg), HSSRmg induced higher ELISA titers targeting HAstem and spike-RBD and exhibited significantly enhanced neutralization activity against the Wuhan pseudovirus. The enhanced immune responses raised by JR300-adjuvanted HSSRmg compared to HSSRmg alone include more anti-HAstem and anti-spike-RBD antibodies that provide cross-protection against H1N1 challenges and cross-neutralization of SARS-CoV-2 pseudoviruses. Furthermore, the enhanced immune response raised by JR300-adjuvanted-HSSRmg skews toward a more balanced Th1/Th2 response than that raised by HSSRmg alone. Notably, HSSRmg elicited more plasma B cells and memory B cells, and higher IL-4 and IFN-γ cytokine immune responses than spike (S-2P) in mice with preexisting influenza-specific immunity, suggesting that B-cell activation most likely occurs through CD4+ T-cell stimulation. This study demonstrated that HSSRmg produced using a monoglycosylation process and combined with the JR300 adjuvant elicits superior cross-strain immune responses against SARS-CoV-2 and influenza viruses in mice compared with S-2P. JR300-adjuvanted HSSRmg has great potential as a coronavirus-influenza vaccine that provides dual protection against SARS-CoV-2 and influenza infections.
Collapse
Affiliation(s)
| | | | - Shao-En Kao
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | - Li-Yang Wu
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | - Jen-Tzu Hou
- RuenHuei Biopharmaceuticals Inc. Taipei, Taiwan
| | - Yu-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
10
|
Evaluation of the Diagnostic Performance of a SARS-CoV-2 and Influenza A/B Combo Rapid Antigen Test in Respiratory Samples. Diagnostics (Basel) 2023; 13:diagnostics13050972. [PMID: 36900116 PMCID: PMC10000510 DOI: 10.3390/diagnostics13050972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
This study aimed to evaluate the performance characteristics of a rapid antigen test developed to detect SARS-CoV-2 (COVID-19), influenza A virus (IAV), and influenza B virus (IBV) (flu) compared with those of the real-time reverse transcription-polymerase chain reaction (rRT-PCR) method. One hundred SARS-CoV-2, one hundred IAV, and twenty-four IBV patients whose diagnoses were confirmed by clinical and laboratory methods were included in the patient group. Seventy-six patients, who were negative for all respiratory tract viruses, were included as the control group. The Panbio™ COVID-19/Flu A&B Rapid Panel test kit was used in the assays. The sensitivity values of the kit were 97.5%, 97.9%, and 33.33% for SARS-CoV-2, IAV, and IBV, respectively, in samples with a viral load below 20 Ct values. The sensitivity values of the kit were 16.7%, 36.5%, and 11.11% for SARS-CoV-2, IAV, and IBV, respectively, in samples with a viral load above 20 Ct. The kit's specificity was 100%. In conclusion, this kit demonstrated high sensitivity to SARS-CoV-2 and IAV for viral loads below 20 Ct values, but the sensitivity values were not compatible with PCR positivity for lower viral loads over 20 Ct values. Rapid antigen tests may be preferred as a routine screening tool in communal environments, especially in symptomatic individuals, when diagnosing SARS-CoV-2, IAV, and IBV with high caution.
Collapse
|