1
|
Holkar SK, Balasubramaniam P, Kumar A, Kadirvel N, Shingote PR, Chhabra ML, Kumar S, Kumar P, Viswanathan R, Jain RK, Pathak AD. Present Status and Future Management Strategies for Sugarcane Yellow Leaf Virus: A Major Constraint to the Global Sugarcane Production. THE PLANT PATHOLOGY JOURNAL 2020; 36:536-557. [PMID: 33312090 PMCID: PMC7721539 DOI: 10.5423/ppj.rw.09.2020.0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 02/08/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV) is a distinct member of the Polerovirus genus of the Luteoviridae family. SCYLV is the major limitation to sugarcane production worldwide and presently occurring in most of the sugarcane growing countries. SCYLV having high genetic diversity within the species and presently ten genotypes are known to occur based on the complete genome sequence information. SCYLV is present in almost all the states of India where sugarcane is grown. Virion comprises of 180 coat protein units and are 24-29 nm in diameter. The genome of SCYLV is a monopartite and comprised of single-stranded (ss) positive-sense (+) linear RNA of about 6 kb in size. Virus genome consists of six open reading frames (ORFs) that are expressed by sub-genomic RNAs. The SCYLV is phloem-limited and transmitted by sugarcane aphid Melanaphis sacchari in a circulative and non-propagative manner. The other aphid species namely, Ceratovacuna lanigera, Rhopalosiphum rufiabdominalis, and R. maidis also been reported to transmit the virus. The virus is not transmitted mechanically, therefore, its transmission by M. sacchari has been studied in different countries. SCYLV has a limited natural host range and mainly infect sugarcane (Sachharum hybrid), grain sorghum (Sorghum bicolor), and Columbus grass (Sorghum almum). Recent insights in the protein-protein interactions of Polerovirus through protein interaction reporter (PIR) technology enable us to understand viral encoded proteins during virus replication, assembly, plant defence mechanism, short and long-distance travel of the virus. This review presents the recent understandings on virus biology, diagnosis, genetic diversity, virus-vector and host-virus interactions and conventional and next generation management approaches.
Collapse
Affiliation(s)
- Somnath Kadappa Holkar
- ICAR-Indian Institute of Sugarcane Research, Biological Control Centre, Pravaranagar, Maharashtra 43 72, India
| | | | - Atul Kumar
- ICAR-Indian Institute of Sugarcane Research, Biological Control Centre, Pravaranagar, Maharashtra 43 72, India
- Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow 226 010, Uttar Pradesh, India
| | - Nithya Kadirvel
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 61 007, Tamil Nadu, India
| | | | - Manohar Lal Chhabra
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Shubham Kumar
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Praveen Kumar
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Rasappa Viswanathan
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 61 007, Tamil Nadu, India
| | - Rakesh Kumar Jain
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
| | - Ashwini Dutt Pathak
- ICAR-Indian Institute of Sugarcane Research, Lucknow 226 002, Uttar Pradesh, India
| |
Collapse
|
2
|
Khalil F, Yueyu X, Naiyan X, Di L, Tayyab M, Hengbo W, Islam W, Rauf S, Pinghua C. Genome characterization of Sugarcane Yellow Leaf Virus with special reference to RNAi based molecular breeding. Microb Pathog 2018; 120:187-197. [PMID: 29730517 DOI: 10.1016/j.micpath.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022]
Abstract
Sugarcane is an essential crop for sugar and biofuel. Globally, its production is severely affected by sugarcane yellow leaf disease (SCYLD) caused by Sugarcane Yellow Leaf Virus (SCYLV). Many aphid vectors are involved in the spread of the disease which reduced the effectiveness of cultural and chemical management. Empirical methods of plant breeding such as introgression from wild and cultivated germplasm were not possible or at least challenging due to the absence of resistance in cultivated and wild germplasm of sugarcane. RNA interference (RNAi) transformation is an effective method to create virus-resistant varieties. Nevertheless, limited progress has been made due to lack of comprehensive research program on SCYLV based on RNAi technique. In order to show improvement and to propose future strategies for the feasibility of the RNAi technique to cope SCYLV, genome-wide consensus sequences of SCYLV were analyzed through GenBank. The coverage rates of every consensus sequence in SCYLV isolates were calculated to evaluate their practicability. Our analysis showed that single consensus sequence from SCYLV could not work well for RNAi based sugarcane breeding programs. This may be due to high mutation rate and continuous recombination within and between various viral strains. Alternative multi-target RNAi strategy is suggested to combat several strains of the viruses and to reduce the silencing escape. The multi-target small interfering RNA (siRNA) can be used together to construct RNAi plant expression plasmid, and to transform sugarcane tissues to develop new sugarcane varieties resistant to SCYLV.
Collapse
Affiliation(s)
- Farghama Khalil
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu Yueyu
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Naiyan
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liu Di
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Muhammad Tayyab
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wang Hengbo
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Waqar Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Saeed Rauf
- University College of Agriculture, University of Sargodha, Pakistan
| | - Chen Pinghua
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; GMOs LAB of Quality Supervision Inspection &Testing Center for Sugarcane and Derived Products, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
3
|
ElSayed AI, Komor E, Boulila M, Viswanathan R, Odero DC. Biology and management of sugarcane yellow leaf virus: an historical overview. Arch Virol 2015; 160:2921-2934. [PMID: 26424197 DOI: 10.1007/s00705-015-2618-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/17/2015] [Indexed: 02/05/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV) is one of the most widespread viruses causing disease in sugarcane worldwide. The virus has been responsible for drastic economic losses in most sugarcane-growing regions and remains a major concern for sugarcane breeders. Infection with SCYLV results in intense yellowing of the midrib, which extends to the leaf blade, followed by tissue necrosis from the leaf tip towards the leaf base. Such symptomatic leaves are usually characterized by increased respiration, reduced photosynthesis, a change in the ratio of hexose to sucrose, and an increase in starch content. SCYLV infection affects carbon assimilation and metabolism in sugarcane, resulting in stunted plants in severe cases. SCYLV is mainly propagated by planting cuttings from infected stalks. Phylogenetic analysis has confirmed the worldwide distribution of at least eight SCYLV genotypes (BRA, CHN1, CHN3, CUB, HAW, IND, PER, and REU). Evidence of recombination has been found in the SCYLV genome, which contains potential recombination signals in ORF1/2 and ORF5. This shows that recombination plays an important role in the evolution of SCYLV.
Collapse
Affiliation(s)
- Abdelaleim Ismail ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519, Zagazig, Egypt.
- Everglades Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3200 East Palm Beach Road, Belle Glade, FL, 33430-4702, USA.
| | - Ewald Komor
- Plant Physiology, University Bayreuth, 95440, Bayreuth, Germany
| | - Moncef Boulila
- Institut de l'Olivier, B.P. 14, 4061, Sousse Ibn-khaldoun, Tunisia
| | - Rasappa Viswanathan
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, 641007, India
| | - Dennis C Odero
- Everglades Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3200 East Palm Beach Road, Belle Glade, FL, 33430-4702, USA
| |
Collapse
|
4
|
Lin YH, Gao SJ, Damaj MB, Fu HY, Chen RK, Mirkov TE. Genome characterization of sugarcane yellow leaf virus from China reveals a novel recombinant genotype. Arch Virol 2014; 159:1421-9. [DOI: 10.1007/s00705-013-1957-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
|
5
|
Chinnaraja C, Viswanathan R, Karuppaiah R, Bagyalakshmi K, Malathi P, Parameswari B. Complete genome characterization of Sugarcane yellow leaf virus from India: Evidence for RNA recombination. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2013; 135:335-349. [DOI: 10.1007/s10658-012-0090-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Gao SJ, Lin YH, Pan YB, Damaj MB, Wang QN, Mirkov TE, Chen RK. Molecular characterization and phylogenetic analysis of Sugarcane yellow leaf virus isolates from China. Virus Genes 2012; 45:340-9. [PMID: 22752564 DOI: 10.1007/s11262-012-0774-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/08/2012] [Indexed: 11/30/2022]
Abstract
Sugarcane yellow leaf virus (SCYLV) (genus Polerovirus, family Luteoviridae), the causal agent of sugarcane yellow leaf disease (YLD), was first detected in China in 2006. To assess the distribution of SCYLV in the major sugarcane-growing Chinese provinces, leaf samples from 22 sugarcane clones (Saccharum spp. hybrid) showing YLD symptoms were collected and analyzed for infection by the virus using reverse transcription PCR (RT-PCR), quantitative RT-PCR, and immunological assays. A complete genomic sequence (5,879 nt) of the Chinese SCYLV isolate CHN-FJ1 and partial genomic sequences (2,915 nt) of 13 other Chinese SCYLV isolates from this study were amplified, cloned, and sequenced. The genomic sequence of the CHN-FJ1 isolate was found to share a high identity (98.4-99.1 %) with those of the Brazilian (BRA) genotype isolates and a low identity (86.5-86.9 %) with those of the CHN1 and Cuban (CUB) genotype isolates. The genetic diversity of these 14 Chinese SCYLV isolates was assessed along with that of 29 SCYLV isolates of worldwide origin reported in the GenBank database, based on the full or partial genomic sequence. Phylogenetic analysis demonstrated that all the 14 Chinese SCYLV isolates clustered into one large group with the BRA genotype and 12 other reported SCYLV isolates. In addition, five reported Chinese SCYLV isolates were grouped with the Peruvian (PER), CHN1 and CUB genotypes. We therefore speculated that at least four SCYLV genotypes, BRA, PER, CHN1, and CUB, are associated with YLD in China. Interestingly, a 39-nt deletion was detected in the sequence of the CHN-GD3 isolate, in the middle of the ORF1 region adjacent to the overlap between ORF1 and ORF2. This location is known to be one of the recombination breakpoints in the Luteoviridae family.
Collapse
Affiliation(s)
- San-Ji Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Singh D, Rao GP, Snehi SK, Raj SK, Karuppaiah R, Viswanathan R. Molecular detection and identification of thirteen isolates of Sugarcane yellow leaf virus associated with sugarcane yellow leaf disease in nine sugarcane growing states of India. AUSTRALASIAN PLANT PATHOLOGY 2011; 40:522-528. [DOI: 10.1007/s13313-011-0061-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Singh D, Rao G. Molecular detection of two strains ofSugarcane yellow leaf virusin India and their secondary spread in nature through aphids. ACTA ACUST UNITED AC 2011. [DOI: 10.1556/aphyt.46.2011.1.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Wang MQ, Zhou GH. A near-complete genome sequence of a distinct isolate of Sugarcane yellow leaf virus from China, representing a sixth new genotype. Virus Genes 2010; 41:268-72. [PMID: 20563635 DOI: 10.1007/s11262-010-0501-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/07/2010] [Indexed: 11/29/2022]
Abstract
The 5803 nt genomic sequence of a Sugarcane yellow leaf virus (SCYLV) isolate (SCYLV-chn1) from China was determined. It covered more than 98% of the complete viral genome and contained all the six ORFs and the entire intergenic untranslated region. This isolate was most closely related to SCYLV genotype CUB (isolates CUB-YL1 and CB86010) with identities of 95.2-97.4% (nt) (93.2-97.2% aa) in ORF0, ORF1, and ORF2. Sequence comparison and phylogenetic analyses supported the view that this isolate represents a new genotype; SCYLV CHN1 was suggested as the name for this new genotype.
Collapse
Affiliation(s)
- M-Q Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | | |
Collapse
|
10
|
Viswanathan R, Karuppaiah R, Malathi P, Kumar VG, Chinnaraja C. Diagnosis of Sugarcane yellow leaf virus in asymptomatic sugarcane by RT-PCR. SUGAR TECH 2009; 11:368-372. [DOI: 10.1007/s12355-009-0063-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Viswanathan R, Balamuralikrishnan M, Karuppaiah R. Identification of three genotypes of sugarcane yellow leaf virus causing yellow leaf disease from India and their molecular characterization. Virus Genes 2008; 37:368-379. [PMID: 18751882 DOI: 10.1007/s11262-008-0277-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/08/2008] [Indexed: 02/05/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV) that causes yellow leaf disease (YLD) in sugarcane (recently reported in India) belongs to Polerovirus. Detailed studies were conducted to characterize the virus based on partial open reading frames (ORFs) 1 and 2 and complete ORFs 3 and 4 sequences in their genome. Reverse-transcriptase polymerase chain reaction (RT-PCR) was performed on 48 sugarcane leaf samples to detect the virus using a specific set of primers. Of the 48 samples, 36 samples (field samples with and without foliar symptoms) including 10 meristem culture derived plants were found to be positive to SCYLV infection. Additionally, an aphid colony collected from symptomatic sugarcane in the field was also found to be SCYLV positive. The amplicons from 22 samples were cloned, sequenced and acronymed as SCYLV-CB isolates. The nucleotide (nt) and amino acid (aa) sequence comparison showed a significant variation between SCYLV-CB and the database sequences at nt (3.7-5.1%) and aa (3.2-5.3%) sequence level in the CP coding region. However, the database sequences comprising isolates of three reported genotypes, viz., BRA, PER and REU, were observed with least nt and aa sequence dissimilarities (0.0-1.6%). The phylogenetic analyses of the overlapping ORFs (ORF 3 and ORF 4) of SCYLV encoding CP and MP determined in this study and additional sequences of 26 other isolates including an Indian isolate (SCYLV-IND) available from GenBank were distributed in four phylogenetic clusters. The SCYLV-CB isolates from this study lineated in two clusters (C1 and C2) and all the other isolates from the worldwide locations into another two clusters (C3 and C4). The sequence variation of the isolates in this study with the database isolates, even in the least variable region of the SCYLV genome, showed that the population existing in India is significantly different from rest of the world. Further, comparison of partial sequences encoding for ORFs 1 and 2 revealed that YLD in sugarcane in India is caused by at least three genotypes, viz., CUB, IND and BRA-PER, of which a majority of the samples were found infected with Cuban genotype (CUB) and lesser by IND and BRA-PER genotypes. The genotype IND was identified as a new genotype from this study, and this was found to have significant variation with the reported genotypes.
Collapse
Affiliation(s)
- R Viswanathan
- Plant Pathology Section, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, 641007, India.
| | | | | |
Collapse
|
12
|
Salem NM, Miller WA, Rowhani A, Golino DA, Moyne AL, Falk BW. Rose spring dwarf-associated virus has RNA structural and gene-expression features like those of Barley yellow dwarf virus. Virology 2008; 375:354-60. [PMID: 18329064 PMCID: PMC4324725 DOI: 10.1016/j.virol.2008.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/29/2007] [Accepted: 01/27/2008] [Indexed: 11/29/2022]
Abstract
We determined the complete nucleotide sequence of the Rose spring dwarf-associated virus (RSDaV) genomic RNA (GenBank accession no. EU024678) and compared its predicted RNA structural characteristics affecting gene expression. A cDNA library was derived from RSDaV double-stranded RNAs (dsRNAs) purified from infected tissue. Nucleotide sequence analysis of the cloned cDNAs, plus for clones generated by 5'- and 3'-RACE showed the RSDaV genomic RNA to be 5808 nucleotides. The genomic RNA contains five major open reading frames (ORFs), and three small ORFs in the 3'-terminal 800 nucleotides, typical for viruses of genus Luteovirus in the family Luteoviridae. Northern blot hybridization analysis revealed the genomic RNA and two prominent subgenomic RNAs of approximately 3 kb and 1 kb. Putative 5' ends of the sgRNAs were predicted by identification of conserved sequences and secondary structures which resembled the Barley yellow dwarf virus (BYDV) genomic RNA 5' end and subgenomic RNA promoter sequences. Secondary structures of the BYDV-like ribosomal frameshift elements and cap-independent translation elements, including long-distance base pairing spanning four kb were identified. These contain similarities but also informative differences with the BYDV structures, including a strikingly different structure predicted for the 3' cap-independent translation element. These analyses of the RSDaV genomic RNA show more complexity for the RNA structural elements for members of the Luteoviridae.
Collapse
Affiliation(s)
- Nida’ M. Salem
- Department of Plant Pathology, One Shields Ave., University of California, Davis, CA 95616, USA
| | - W. Allen Miller
- Plant Pathology Department and Biochemistry, Biophysics & Molecular Biology Department, Iowa State University, Ames, Iowa 50011, USA
| | - Adib Rowhani
- Department of Plant Pathology, One Shields Ave., University of California, Davis, CA 95616, USA
| | - Deborah A. Golino
- Department of Plant Pathology, One Shields Ave., University of California, Davis, CA 95616, USA
| | - Anne-Laure Moyne
- Department of Plant Pathology, One Shields Ave., University of California, Davis, CA 95616, USA
| | - Bryce W. Falk
- Department of Plant Pathology, One Shields Ave., University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Abu Ahmad Y, Rassaby L, Royer M, Borg Z, Braithwaite KS, Mirkov TE, Irey MS, Perrier X, Smith GR, Rott P. Yellow leaf of sugarcane is caused by at least three different genotypes of sugarcane yellow leaf virus, one of which predominates on the Island of Réunion. Arch Virol 2006; 151:1355-71. [PMID: 16453082 DOI: 10.1007/s00705-005-0712-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
The genetic diversity of sugarcane yellow leaf virus (SCYLV) was analyzed with 43 virus isolates from Réunion Island and 17 isolates from world-wide locations. We attempted to amplify by reverse-transcription polymerase chain reaction (RT-PCR), clone, and sequence four different fragments covering 72% of the genome of these virus isolates. The number of amplified isolates and useful sequence information varied according to each fragment, whereas an amplicon was obtained with diagnostic primers for 59 out of 60 isolates (98%). Phylogenetic analyses of the sequences determined here and additional sequences of 11 other SCYLV isolates available from GenBank showed that SCYLV isolates were distributed in different phylogenetic groups or belonged to single genotypes. The majority of isolates from Réunion Island were grouped in phylogenetic clusters that did not contain any isolates from other origins. The complete six ORFs (5612 bp) of five SCYLV isolates (two from Réunion Island, one from Brazil, one from China, and one from Peru) were amplified, cloned, and sequenced. The existence of at least three distinct genotypes of SCYLV was shown by phylogenetic analysis of the sequences of these isolates and additional published sequences of three SCYLV isolates (GenBank accessions). The biological significance of these genotypes and of the origin of the distinct lineage of SCYLV in Réunion Island remains to be determined.
Collapse
Affiliation(s)
- Y Abu Ahmad
- UMR 385 AGRO.M-CIRAD-INRA Biologie et Génétique des Interactions Plante-Parasite, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gonçalves MC, Vega J, Oliveira JG, Gomes MMA. Sugarcane yellow leaf virus infection leads to alterations in photosynthetic efficiency and carbohydrate accumulation in sugarcane leaves. ACTA ACUST UNITED AC 2005. [DOI: 10.1590/s0100-41582005000100002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection by Sugarcane yellow leaf virus (ScYLV) causes severe leaf symptoms in sugarcane (Saccharum spp.) hybrids, which indicate alterations in its photosynthetic apparatus. To gain an overview of the physiological status of infected plants, we evaluated chlorophyll a fluorescence and gas exchange assays, correlating the results with leaf metabolic surveys, i.e., photosynthetic pigments and carbohydrate contents. When compared to healthy plants, infected plants showed a reduction in potential quantum efficiency for photochemistry of photosystem (PSII) and alterations in the filling up of the plastoquinone (PQ) pool. They also showed reduction in the CO2 net exchange rates, probably as a consequence of impaired quantum yield. In addition, reductions were found in the contents of photosynthetic leaf pigments and in the ratio chlorophyll a/chlorophyll b (chla/chlb). Carbohydrate content in the leaves was increased as a secondary effect of the ScYLV infection. This article discusses the relation of virus replication and host defense responses with general alterations in the photosynthetic apparatus and in the metabolism of infected plants.
Collapse
|
15
|
Moonan F, Mirkov TE. Analyses of genotypic diversity among North, South, and Central American isolates of sugarcane yellow leaf virus: evidence for Colombian origins and for intraspecific spatial phylogenetic variation. J Virol 2002; 76:1339-48. [PMID: 11773408 PMCID: PMC135781 DOI: 10.1128/jvi.76.3.1339-1348.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Accepted: 10/23/2001] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the genotypic diversity of sugarcane yellow leaf virus (SCYLV) collected from North, South, and Central America by fingerprinting assays and selective cDNA cloning and sequencing. One group of isolates from Colombia, designated the C-population, has been identified as residing at the root node between a separable superpopulation structure of SCYLV and other members of the family Luteoviridae, indicating that the progenitor viruses of the North, South, and Central American isolates of the SCYLV superpopulation most likely arose from a C-population structure. From a model of intrafamilial evolution (F. Moonan et al., Virology 269:156-171, 2000), a prediction could be made that within the SCYLV species, the capacity of genomic sequence divergence would range from lowest in the capsid protein open reading frame 3 (ORF 3) to highest in a region spanning across the carboxy-terminal end of the RNA-dependent RNA polymerase ORF. We have demonstrated the validity and applicability of this intrafamilial model for the prediction of intraspecies SCYLV diversity. Analysis of spatial phylogenetic variation (SPV) within the SCYLV isolates could not be assessed by application of a "partial likelihoods assessed through optimization" (PLATO)-derived intraspecies model alone. However, application of a PLATO-derived intrafamilial model with the intraspecies-derived model allowed distinction of three forms of SPV. Two of the SPV forms identified correspond to the extremes in a continuum of sequence evolution displayed in a SCYLV superpopulation structure, and the third form was diagnostic of a C-population structure. The application of these types of models has value in terms of predicting the types of SCYLV intraspecies diversity that may exist worldwide, and in general, may be useful in application for more informed design of transgenes for use in the elicitation of homology-dependent virus resistance mechanisms in transgenic plants.
Collapse
Affiliation(s)
- Francis Moonan
- Department of Plant Pathology and Microbiology, Texas A&M University System Agricultural Experiment Station, Weslaco, Texas 78596, USA
| | | |
Collapse
|