1
|
Padilla-Godínez FJ, Ruiz-Ortega LI, Guerra-Crespo M. Nanomedicine in the Face of Parkinson's Disease: From Drug Delivery Systems to Nanozymes. Cells 2022; 11:3445. [PMID: 36359841 PMCID: PMC9657131 DOI: 10.3390/cells11213445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 01/02/2024] Open
Abstract
The complexity and overall burden of Parkinson's disease (PD) require new pharmacological approaches to counteract the symptomatology while reducing the progressive neurodegeneration of affected dopaminergic neurons. Since the pathophysiological signature of PD is characterized by the loss of physiological levels of dopamine (DA) and the misfolding and aggregation of the alpha-synuclein (α-syn) protein, new proposals seek to restore the lost DA and inhibit the progressive damage derived from pathological α-syn and its impact in terms of oxidative stress. In this line, nanomedicine (the medical application of nanotechnology) has achieved significant advances in the development of nanocarriers capable of transporting and delivering basal state DA in a controlled manner in the tissues of interest, as well as highly selective catalytic nanostructures with enzyme-like properties for the elimination of reactive oxygen species (responsible for oxidative stress) and the proteolysis of misfolded proteins. Although some of these proposals remain in their early stages, the deepening of our knowledge concerning the pathological processes of PD and the advances in nanomedicine could endow for the development of potential treatments for this still incurable condition. Therefore, in this paper, we offer: (i) a brief summary of the most recent findings concerning the physiology of motor regulation and (ii) the molecular neuropathological processes associated with PD, together with (iii) a recapitulation of the current progress in controlled DA release by nanocarriers and (iv) the design of nanozymes, catalytic nanostructures with oxidoreductase-, chaperon, and protease-like properties. Finally, we conclude by describing the prospects and knowledge gaps to overcome and consider as research into nanotherapies for PD continues, especially when clinical translations take place.
Collapse
Affiliation(s)
- Francisco J. Padilla-Godínez
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
| | - Leonardo I. Ruiz-Ortega
- Institute for Physical Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Mexico
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Magdalena Guerra-Crespo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
| |
Collapse
|
2
|
The effects of biologically important divalent and trivalent metal cations on the cyclization step of dopamine autooxidation reaction: a quantum chemical study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
3
|
Raj V, Nair A, Thekkuveettil A. Manganese exposure during early larval stages of C. elegans causes learning disability in the adult stage. Biochem Biophys Res Commun 2021; 568:89-94. [PMID: 34198165 DOI: 10.1016/j.bbrc.2021.06.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
Manganese (Mn), even though an essential trace element, causes neurotoxicity in excess. In adults, over-exposure to Mn causes clinical manifestations, including dystonia, progressive bradykinesia, disturbance of gait, slurring, and stuttering of speech. These symptoms are mainly because of Mn-associated oxidative stress and degeneration of dopamine neurons in the central nervous system. Children with excessive Mn exposure often show learning disabilities but rarely show symptoms associated with dopaminergic neuron dysfunction. It is unclear why Mn exposure shows distinctive clinical outcomes in developing brains versus adult brains. Studies on nematode C. elegans have demonstrated that it is an excellent model to elucidate Mn-associated toxicity in the nervous system. In this study, we chronically exposed Mn to L1 larval stage of the worms to understand the effects on dopamine neurons and cognitive development. The worms showed modified behavior to exogenous dopamine compared to the control. The dopamine neurons showed resistance to neurodegeneration on repeated Mn exposure during the adult stage. As observed in mammalian systems, these worms showed significantly low olfactory adaptive learning and memory. This study shows that C. elegans alters adaptive developmental plasticity during Mn overexposure, modifying its sensitivity towards the metal ion and leads to remodeling in its innate learning behavior.
Collapse
Affiliation(s)
- Vishnu Raj
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695012, India
| | - Agrima Nair
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695012, India
| | - Anoopkumar Thekkuveettil
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695012, India.
| |
Collapse
|
4
|
Kou L, Duan Y, Wang P, Fu Y, Darabedian N, He Y, Jiang D, Chen D, Xiang J, Liu G, Zhou F. Norepinephrine-Fe(III)-ATP Ternary Complex and Its Relevance to Parkinson's Disease. ACS Chem Neurosci 2019; 10:2777-2785. [PMID: 31059226 DOI: 10.1021/acschemneuro.9b00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aberrant autoxidation of norepinephrine (NE) in the presence of oxygen, which is accelerated by Fe(III), has been linked to the pathogenesis of the Parkinson's disease (PD). Adenosine triphosphate (ATP), as a neurotransmitter whose release can be stimulated by tissue damage and oxidative stress, is co-stored and often co-released with NE in presynaptic terminals. We have shown previously that ATP inhibits the iron-catalyzed dopamine oxidation, thereby decreasing the production of certain neurotoxins such as 6-hydroxydopamine. Whether ATP plays a similar role in Fe(III)-catalyzed NE oxidation and how it maintains the NE stability have not been investigated. Here, we studied the coordination in a ternary complex among NE, Fe(III), and ATP, and found that Fe(III) is coordinated as a octahedral center by NE and ATP. Voltammetry and mass spectrometry were employed to examine this ternary complex's modulation of the NE autoxidation. NE-Fe(III)-ATP plays a protective role to modulate the autoxidation and Fe(III)-catalyzed oxidation of NE. The ternary complex can be detected in the substantia nigra (SN), locus coeruleus (LC), and striatum regions of C57BL/6 wild-type mice. In contrast, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse brains displayed a significant decrease of the ternary complex in the SN region and an increase in the LC and striatum areas. We posit that the ternary complex is produced by noradrenergic neurons as a protective regulator against neuronal damage and oxidative stress, contributing to the lower vulnerability of LC neurons with respect to that of SN neurons.
Collapse
Affiliation(s)
- Lu Kou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuemei Duan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, P. R. China
| | - Yaru Fu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, P. R. China
| | - Nerek Darabedian
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, P. R. China
| | - Dianlu Jiang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California 90032, United States
| | - Dinglong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California 90032, United States
| |
Collapse
|
5
|
Devi JSA, Aparna RS, Aswathy B, Nebu J, Aswathy AO, George S. Understanding the Citric Acid-Urea Co-Directed Microwave Assisted Synthesis and Ferric Ion Modulation of Fluorescent Nitrogen Doped Carbon Dots: A Turn On Assay for Ascorbic Acid. ChemistrySelect 2019. [DOI: 10.1002/slct.201803726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- J. S. Anjali Devi
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| | - R. S. Aparna
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| | - B. Aswathy
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| | - John Nebu
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| | - A. O. Aswathy
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| | - Sony George
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| |
Collapse
|
6
|
Lu C, Svoboda KR, Lenz KA, Pattison C, Ma H. Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15378-15389. [PMID: 29564703 DOI: 10.1007/s11356-018-1752-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 05/23/2023]
Abstract
Manganese (Mn) is considered as an emerging metal contaminant in the environment. However, its potential interactions with companying toxic metals and the associated mixture effects are largely unknown. Here, we investigated the toxicity interactions between Mn and two commonly seen co-occurring toxic metals, Pb and Cd, in a model organism the nematode Caenorhabditis elegans. The acute lethal toxicity of mixtures of Mn+Pb and Mn+Cd were first assessed using a toxic unit model. Multiple toxicity endpoints including reproduction, lifespan, stress response, and neurotoxicity were then examined to evaluate the mixture effects at sublethal concentrations. Stress response was assessed using a daf-16::GFP transgenic strain that expresses GFP under the control of DAF-16 promotor. Neurotoxicity was assessed using a dat-1::GFP transgenic strain that expresses GFP in dopaminergic neurons. The mixture of Mn+Pb induced a more-than-additive (synergistic) lethal toxicity in the worm whereas the mixture of Mn+Cd induced a less-than-additive (antagonistic) toxicity. Mixture effects on sublethal toxicity showed more complex patterns and were dependent on the toxicity endpoints as well as the modes of toxic action of the metals. The mixture of Mn+Pb induced additive effects on both reproduction and lifespan, whereas the mixture of Mn+Cd induced additive effects on lifespan but not reproduction. Both mixtures seemed to induce additive effects on stress response and neurotoxicity, although a quantitative assessment was not possible due to the single concentrations used in mixture tests. Our findings demonstrate the complexity of metal interactions and the associated mixture effects. Assessment of metal mixture toxicity should take into consideration the unique property of individual metals, their potential toxicity mechanisms, and the toxicity endpoints examined.
Collapse
Affiliation(s)
- Cailing Lu
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N 10th St, Milwaukee, WI, USA
- School of Public Health, Guangxi Medical University, 22 Shuangyong Rd, Nanning, Guangxi, China
| | - Kurt R Svoboda
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N 10th St, Milwaukee, WI, USA
| | - Kade A Lenz
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N 10th St, Milwaukee, WI, USA
| | - Claire Pattison
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N 10th St, Milwaukee, WI, USA
| | - Hongbo Ma
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N 10th St, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040783. [PMID: 29669989 PMCID: PMC5923825 DOI: 10.3390/ijerph15040783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/26/2023]
Abstract
Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn) toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC) complex limbic encephalitis in view of previous positive autoantibodies. His failure to respond to immunotherapy prompted testing for heavy metal poisoning, which was positive for Mn. This is the first report to examine an association between Mn and VGKC antibodies and the effects of Mn on functional brain activity using functional near-infrared spectroscopy (fNIRS).
Collapse
|
8
|
Wang E, Zhou Y, Huang Q, Pang L, Qiao H, Yu F, Gao B, Zhang J, Min Y, Ma T. 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu(2+). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:327-335. [PMID: 26232576 DOI: 10.1016/j.saa.2015.07.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/10/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
A dual-function optical chemosensor (RBF) was designed and easily synthesized by condensation reaction of 5-Hydroxymethylfurfural and rhodamine B hydrazide. RBF exhibited highly sensitive, highly selective and quick response to acidic pH. The fluorescence intensity of RBF exhibited a more than 41-fold increase within the pH range from 7.50 to 3.73 with a pKa value of 5.02, which could be successfully applied to monitor intracellular pH in living PC12 cells and HeLa cells. Additionally, the spectroscopy of UV-Vis and EDTA-adding experiments indicated that RBF was a highly selective and reversible colorimetric chemosensor for Cu(2+) in Tris-HCl (10mM, pH=7.2) aqueous buffer solution as well as other metal ions had no obvious interference. Moreover, RBF has been successfully applied to detect Cu(2+) in real water samples.
Collapse
Affiliation(s)
- Enze Wang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Yanmei Zhou
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China.
| | - Qi Huang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Lanfang Pang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Han Qiao
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Fang Yu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Junli Zhang
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475004, PR China
| | - Yinghao Min
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Tongsen Ma
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| |
Collapse
|
9
|
Catalan-Figueroa J, Palma-Florez S, Alvarez G, Fritz HF, Jara MO, Morales JO. Nanomedicine and nanotoxicology: the pros and cons for neurodegeneration and brain cancer. Nanomedicine (Lond) 2015; 11:171-87. [PMID: 26653284 DOI: 10.2217/nnm.15.189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Current strategies for brain diseases are mostly symptomatic and noncurative. Nanotechnology has the potential to facilitate the transport of drugs across the blood-brain barrier and to enhance their pharmacokinetic profile. However, to reach clinical application, an understanding of nanoneurotoxicity in terms of oxidative stress and inflammation is required. Emerging evidence has also shown that nanoparticles have the ability to alter autophagy, which can induce inflammation and oxidative stress, or vice versa. These effects may increase neurodegenerative processes damage, but on the other hand, they may have benefits for brain cancer therapies. In this review, we emphasize how nanomaterials may induce neurotoxic effects focusing on neurodegeneration, and how these effects could be exploited toward brain cancer treatment.
Collapse
Affiliation(s)
- Johanna Catalan-Figueroa
- Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile.,Laboratory of Neuroplasticity & Neurogenetics, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | | | - Gonzalo Alvarez
- Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Hans F Fritz
- Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Miguel O Jara
- Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Javier O Morales
- Department of Pharmaceutical Science & Technology, School of Chemical & Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
| |
Collapse
|
10
|
Abstract
Human exposure to neurotoxic metals is a global public health problem. Metals which cause neurological toxicity, such as lead (Pb) and manganese (Mn), are of particular concern due to the long-lasting and possibly irreversible nature of their effects. Pb exposure in childhood can result in cognitive and behavioural deficits in children. These effects are long-lasting and persist into adulthood even after Pb exposure has been reduced or eliminated. While Mn is an essential element of the human diet and serves many cellular functions in the human body, elevated Mn levels can result in a Parkinson's disease (PD)-like syndrome and developmental Mn exposure can adversely affect childhood neurological development. Due to the ubiquitous presence of both metals, reducing human exposure to toxic levels of Mn and Pb remains a world-wide public health challenge. In this review we summarize the toxicokinetics of Pb and Mn, describe their neurotoxic mechanisms, and discuss common themes in their neurotoxicity.
Collapse
Affiliation(s)
| | - Tomas R Guilarte
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| |
Collapse
|