1
|
Su W, Xu P, Petzold R, Yan J, Ritter T. Ligand-to-Copper Charge-Transfer-Enabled C-H Sulfoximination of Arenes. Org Lett 2023; 25:1025-1029. [PMID: 36735864 PMCID: PMC9942232 DOI: 10.1021/acs.orglett.3c00256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Herein, we report a photoinduced sulfoximine-to-copper charge-transfer-enabled generation of sulfoximinyl radicals directly from NH-sulfoximines for C-H sulfoximination of arenes via radical addition. Through copper-LMCT, N-arylation of NH-sulfoximines was achieved for the first time using arenes of different electronic structures as the aryl donors.
Collapse
Affiliation(s)
- Wanqi Su
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany,Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Peng Xu
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Roland Petzold
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Jiyao Yan
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany,Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Tobias Ritter
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany,
| |
Collapse
|
2
|
Jozefíková F, Perontsis S, Koňáriková K, Švorc Ľ, Mazúr M, Psomas G, Moncol J. In vitro biological activity of copper(II) complexes with NSAIDs and nicotinamide: Characterization, DNA- and BSA-interaction study and anticancer activity. J Inorg Biochem 2021; 228:111696. [PMID: 35030390 DOI: 10.1016/j.jinorgbio.2021.111696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022]
Abstract
Through the reaction of copper(II) acetate with nicotinamide (pyridine-3-carboxylic acid amide, niacinamide) and some derivatives of N-phenylanthranilic acid (fenamates), seven new mixed-ligand copper(II) compounds were isolated: [Cu(tolf-O)(tolf-O,O')nia-N)2(EtOH)] (1), [Cu(tolf-O)(tolf-O,O')(nia-N)2(MeOH)] (2), [Cu(meclf-O)(meclf-O,O')(nia-N)2(EtOH)] (3), [Cu(meclf-O)(meclf-O,O')(nia-N)2(MeOH)] (4), [Cu(meclf-O)(meclf-O,O')(nia-N)2(ACN)] (5), [Cu(mef-O)(mef-O,O')(nia-N)2(EtOH)] (6) and [Cu(mef-O)(mef-O,O')(nia-N)2(ACN)] (7) containing a molecule of relevant solvent as ligand in their primary crystal structure (tolf = tolfenamate, meclf = meclofenamate, mef = mefenamate, nia = nicotinamide, EtOH = ethanol, MeOH = methanol, ACN = acetonitrile). The structures of the complexes were determined by single-crystal X-ray analysis. The intermolecular interactions were studied by Hirshfeld surface analysis. The complexes were characterized by IR, UV-vis and EPR spectroscopy and their redox properties were determined by cyclic voltammetry. The interaction of the complexes with bovine serum albumin was studied by fluorescence emission spectroscopy and the albumin-binding constants of the compounds were calculated. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques (UV-vis spectroscopy, cyclic voltammetry, viscosity measurements) suggesting intercalation as the most possible mode of binding. DNA-competitive studies of the complexes with ethidium bromide were monitored by fluorescence emission spectroscopy. The cytotoxic effects of copper(II) complexes on lung carcinoma cells and healthy cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric technique.
Collapse
Affiliation(s)
- Flóra Jozefíková
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Katarína Koňáriková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 81372 Bratislava, Slovakia
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Milan Mazúr
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
3
|
Wambugu K, Nyamato GS, Ogunah J, Ojwach SO. Phenoxy-imino ligands: coordination chemistry and binding properties with copper(II) cations. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.2015581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kelvin Wambugu
- Department of Physical Sciences, University of Embu, Embu, Kenya
| | | | - Joanne Ogunah
- Department of Physical Sciences, University of Embu, Embu, Kenya
| | - Stephen O. Ojwach
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, South Africa
| |
Collapse
|
4
|
Palmeira-Mello MV, Caballero AB, Lopez-Espinar A, Guedes GP, Caubet A, de Souza AMT, Lanznaster M, Gamez P. DNA-interacting properties of two analogous square-planar cis-chlorido complexes: copper versus palladium. J Biol Inorg Chem 2021; 26:727-740. [PMID: 34453615 PMCID: PMC8437883 DOI: 10.1007/s00775-021-01888-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Two square-planar coordination compounds, namely [Cu(CPYA)Cl2] (1) and [Pd(CPYA)Cl2] (2), were prepared from the ligand 4-chloro-N-(pyridin-2-ylmethyl)aniline (CPYA) and two chloride salts, and were fully characterized, including by X-ray diffraction. Spectroscopic, electrophoretic and AFM studies revealed that the two isostructural compounds were interacting differently with DNA. In both cases, the initial interaction involves electrostatic contacts of the CPYA ligand in the minor groove (as suggested by molecular docking), but subsequent strong binding occurs with the palladium(II) complex 2, whereas the binding with the copper complex 1 is weaker and concentration dependent. The strong binding of 2 eventually leads to the cleavage of the double strand and the redox activity of 1 allows to oxidatively cleave the biomolecule.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, Niterói, RJ, 24020-141, Brazil
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Laboratório de Modelagem Molecular and QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Aida Lopez-Espinar
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, Niterói, RJ, 24020-141, Brazil
| | - Amparo Caubet
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Alessandra M Teles de Souza
- Laboratório de Modelagem Molecular and QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauricio Lanznaster
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, Niterói, RJ, 24020-141, Brazil
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
5
|
Wang K, Prior TJ, Hughes DL, Arbaoui A, Redshaw C. Coordination chemistry of [2 + 2] Schiff-base macrocycles derived from the dianilines [(2-NH 2C 6H 4) 2X] (X = CH 2CH 2, O): structural studies and ROP capability towards cyclic esters. Dalton Trans 2021; 50:8057-8069. [PMID: 34018513 DOI: 10.1039/d1dt00711d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reaction of the [2 + 2] Schiff-base macrocycles {[2-(OH)-5-(R)-C6H2-1,3-(CH)2][CH2CH2(2-C6H4N)2]}2 (R = Me, L1H2; tBu, L2H2) with FeBr2 afforded the complexes [FeBr(L1H2)]2[(FeBr3)2O]·2MeCN (1·2MeCN), [FeBr(L2H2)][X] (X = 0.5(FeBr3)2O, 2·0.5MeCN, X = Br, 3·5.5MeCN), respectively. Reaction of L2H2 with [KFe(OtBu)3(THF)] (formed in situ from FeBr2 and KOtBu), following work-up, led to the isolation of the complex [Fe(L2)(L2H)]·3MeCN (4·3MeCN), whilst with [CuBr2] afforded [CuBr(L2H2)][CuBr2]·2MeCN (5·2MeCN). Attempts to form mixed Co/Ti species by reaction of [CoBrL2][CoBr3(NCMe)] with TiCl4 resulted in [L2H4][CoBr4]·2MeCN (6·2MeCN). Use of the related oxy-bridged Schiff-base macrocycles {[2-(OH)-5-(R)-C6H2-1,3-(CH)2][O(2-C6H4N)2]}2 (R = Me, L3H2; tBu, L4H2) with CoBr2 led to the isolation of the complexes [(CoBr)2(L3)]·2C3H6O (7·2C3H6O), [Co(NCMe)2(L4H2)][CoBr4]·5MeCN (8·5MeCN), [Co(NCMe)6][CoBr3(MeCN)]2·2MeCN (9·2MeCN). For comparative structural/polymerisation studies, the complexes {CoBr(NCMe)L5}2·2MeCN (10·2MeCN) and [Co(NCMe)2L5]2[CoBr3(NCMe)]2 (11), [FeBr(NCMe)L5]2·2MeCN (12·2MeCN) where L5H = 2,6-(CHO)2-4-tBu-C6H2OH, as well as the chelate-free salt [Fe(NCMe)6][FeBr3OFeBr3] (13) have been isolated and structurally characterized. The ability of these complexes to act as catalysts for the ring opening polymerisation (ROP) of ε-caprolactone (ε-CL) and δ-valerolactone (δ-VL) was investigated, as well as co-polymerisation of ε-CL with rac-lactide (r-LA) and vice versa.
Collapse
Affiliation(s)
- Kuiyuan Wang
- Plastics Collaboratory, Department of Chemistry, University of Hull, HU6 7RX, UK.
| | - Timothy J Prior
- Plastics Collaboratory, Department of Chemistry, University of Hull, HU6 7RX, UK.
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | - Carl Redshaw
- Plastics Collaboratory, Department of Chemistry, University of Hull, HU6 7RX, UK.
| |
Collapse
|
6
|
Co2O3 and MnO2 as inexpensive catalysts for the ring-opening polymerization of cyclic esters. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Roymuhury SK, Mandal M, Chakraborty D, Ramkumar V. Homoleptic titanium and zirconium complexes exhibiting unusual Oiminol–metal coordination: application in stereoselective ring-opening polymerization of lactide. Polym Chem 2021. [DOI: 10.1039/d1py00237f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The synthesis and characterization of novel homoleptic Ti and Zr complexes with tridentate ONO-type Schiff base ligands and their catalytic activities towards the ring-opening polymerization (ROP) of lactide are reported.
Collapse
Affiliation(s)
- Sagnik K. Roymuhury
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta 801103
- India
| | - Mrinmay Mandal
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta 801103
- India
| | - Debashis Chakraborty
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | | |
Collapse
|
8
|
Dos Santos TM, Martins CC, Bueno DT, Nunes IJ, Busatto FF, Cargnelutti R, Luchese C, de Lazaro Casagrande O, Saffi J, Wilhelm EA, Pinheiro AC. Synthesis, molecular structure and antioxidant activity of bis [L(μ 2-chloro)copper(II)] supported by phenoxy/naphthoxy-imine ligands. J Inorg Biochem 2020; 210:111130. [PMID: 32563104 DOI: 10.1016/j.jinorgbio.2020.111130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
A new series of Cu(II) complexes [bis[{(μ2-chloro)-2-MeO-Ph-CH2-(N=CH)-2,4-tert-butyl-2-OC6H2)}Cu(II)] (Cu1); bis[{(μ2-chloro)-2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(OC6H2)}Cu(II)] (Cu2); bis[{(μ2-chloro)-2-MeO-Ph-CH2-(N=CH)-2-(OC10H6)} Cu(II)] (Cu3); bis[{(μ2-chloro)-2-MeS-Ph-CH2-(N=CH)-2-(OC10H6)}Cu(II)] complex (Cu4); bis[{2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(OC6H2)}Cu(II)] (Cu5)] have been synthesized and characterized by elemental analysis, IR, UV-Visible and by X-ray crystallography for Cu1, Cu4 and Cu5. In the solid state, Cu1 features of a chloro-bridged dimer complex with κ2 coordination of the monoanionic phenoxy-imine ligand onto the copper center. On the other hand, the molecular structure of Cu4 reveals the naphthoxy-imine ligand with pendant S-group coordinated to the copper atom in tridentate meridional fashion. Treatment of [Cu(OAc)2·H2O] with two equiv. of [2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(HOC6H2)] led to a monomeric complex Cu5, with the ONS-donor Schiff base acting as a bidentate ligand. The redox behavior was explored by cyclic voltammetry. The reduction/oxidation potential of Cu(II) complexes depends on the structure and conformation of the central atom in the coordination compounds. Antioxidant activities of the complexes, Cu1 - Cu5, were determined by in vitro assays such as 1,1-diphenyl-2-picryl-hydrazyl free radicals (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS+). The dinuclear compounds Cu1-Cu4, from the concentration of 5 μM, presented a good activity in scavenging DPPH radical. In addition, most of the Cu(II) complexes showed ABTS.+ radical-scavenging activity. The monomeric complex Cu5 at all concentrations tested showed antioxidant inability. The cytotoxicity of the Cu1 and Cu3 was determined in V79 cell line by reduction of 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay.
Collapse
Affiliation(s)
- Tamara Machado Dos Santos
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Carolina Cristovão Martins
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Danielle Tapia Bueno
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Ianka Jacondino Nunes
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Franciele Faccio Busatto
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Roberta Cargnelutti
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Osvaldo de Lazaro Casagrande
- Laboratório de Catálise Molecular, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 90501-970, Brazil
| | - Jenifer Saffi
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ethel Antunes Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Adriana Castro Pinheiro
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil.
| |
Collapse
|
9
|
Edelsbacher P, Redhammer G, Monkowius U. Copper(II) complexes bearing cyclobutanecarboxylate and pyridine ligands: a new series of dinuclear paddle-wheel complexes. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02589-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractFour members of a new series of paddle-wheel copper(II) complexes bearing cyclobutanecarboxylate as bridging ligand with pyridine derived ligands in axial positions are reported. They have been characterised by FTIR-ATR, UV–Vis spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The synthesis is straight-forward by combining the carboxylic acid, copper(II) acetate, and a slight excess of a pyridine ligand. The molecular structures of three complexes reveal a coordination mode expected for such type of dinuclear copper(II) carboxylates.
Graphic abstract
Collapse
|
10
|
Dai Q, Yu Q, Tian Y, Xie X, Song A, Caruso F, Hao J, Cui J. Advancing Metal-Phenolic Networks for Visual Information Storage. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29305-29311. [PMID: 31322855 DOI: 10.1021/acsami.9b09830] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a facile inking strategy for visual information storage (e.g., writing, printing, and beyond) via surface modification of substrates with polyphenols and subsequent in situ formation of metal-phenolic networks (MPNs) on the substrates. The reported technique has several advantages compared with current printing techniques. Diverse substrates can be used to fulfill the requirements for different applications (e.g., printing, writing, painting, and stamping). A range of colors (e.g., yellow, blue, and green) can be realized using different polyphenols (e.g., tannic acid, gallic acid, and pyrogallol) and metal ions (e.g., CuII, FeIII, and TiIV). The disadvantages (e.g., ink precipitation, color fading) associated with writing or printing using traditional ink can be overcome. The obtained paintings can be easily removed by acids enabling the recycling of substrates. The reported strategy provides a new avenue for the development of portable, nontoxic, and green technologies for writing, printing, and beyond, which expands the applications of MPN-based materials.
Collapse
Affiliation(s)
- Qiong Dai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Xiaolin Xie
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Frank Caruso
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao , Shandong 266237 , China
| |
Collapse
|
11
|
Cho J, Chun MK, Nayab S, Jeong JH. Synthesis and structures of copper(II) complexes containing N,N-bidentate N-substituted phenylethanamine derivatives as pre-catalysts for heterotactic-enriched polylactide. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Hardouin Duparc V, Dimeck C, Schaper F. Replacing sulfonate by carboxylate: application of pyridyliminocarboxylato copper(II) complexes in rac-lactide polymerization and Chan–Evans–Lam coupling. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Copper(II) complexes carrying pyridylmethyleneaminobenzoate or –propanoate ligands, LCuX, were prepared in one-pot reactions from pyridinecarboxaldehyde, aminobenzoic acid or β-alanine, and CuX2 (X = Cl, NO3, OAc, or OTf). All complexes were characterized by single-crystal X-ray diffraction studies and formed either dimers, tetramers, or coordination polymers. Attempted preparation of the respective alkoxide complexes, LCu(OR), was unsuccessful, but use of LCuX/NaOMe mixtures in rac-lactide polymerization indicated under some conditions coordination–insertion polymerization via a copper alkoxide as the mechanism. The complexes performed poorly in rac-lactide polymerization, showing low activities (12 h to completion at 140 °C), low to moderate heterotacticity (Pr = 0.6–0.8), and poor polymer molecular weight control (intramolecular transesterification). They were competent catalysts for Chan–Evans–Lam couplings with phenylboronic acid, without any indication of side reactions such as deboration or aryl homocoupling. The complexes were active in undried methanol, without addition of base, ligand, or molecular sieves. Aniline, n-octylamine, and cyclohexylamine were coupled quantitatively under identical reaction conditions. There is only little influence of the anion on activities (less than a factor of 2) but a strong influence on induction periods. The complexes were not active in CEL coupling with alcohols, phenols, or alkylboronic acids.
Collapse
Affiliation(s)
- Valérie Hardouin Duparc
- Centre in Green Chemistry and Catalysis, Département de chimie, Université de Montréal, 2900 Boul. E.-Montpetit, Montréal, QC H3T 1J4, Canada
- Centre in Green Chemistry and Catalysis, Département de chimie, Université de Montréal, 2900 Boul. E.-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Clémentine Dimeck
- Centre in Green Chemistry and Catalysis, Département de chimie, Université de Montréal, 2900 Boul. E.-Montpetit, Montréal, QC H3T 1J4, Canada
- Centre in Green Chemistry and Catalysis, Département de chimie, Université de Montréal, 2900 Boul. E.-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Frank Schaper
- Centre in Green Chemistry and Catalysis, Département de chimie, Université de Montréal, 2900 Boul. E.-Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
13
|
Mandal M, Ramkumar V, Chakraborty D. Salen complexes of zirconium and hafnium: synthesis, structural characterization and polymerization studies. Polym Chem 2019. [DOI: 10.1039/c8py01750f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Salen complexes of zirconium and hafnium were synthesized and used as effective catalysts for the polymerization of lactide and ε-CL and homopolymerization, copolymerization and coupling of epoxides with CO2.
Collapse
Affiliation(s)
- Mrinmay Mandal
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta 801103
- India
| | | | - Debashis Chakraborty
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| |
Collapse
|
14
|
Fazekas E, Nichol GS, Garden JA, Shaver MP. Iron III Half Salen Catalysts for Atom Transfer Radical and Ring-Opening Polymerizations. ACS OMEGA 2018; 3:16945-16953. [PMID: 31458318 PMCID: PMC6643736 DOI: 10.1021/acsomega.8b02432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 06/10/2023]
Abstract
A series of monometallic pentacoordinate FeIII chloride complexes have been prepared and characterized by high-resolution mass spectrometry and elemental analysis. X-ray diffraction analysis showed that the bis-chelated FeIII complexes bear distorted trigonal bipyramidal geometries. The air- and moisture-stable FeIII complexes were screened as mediators in the reverse atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate. Moderate to excellent control was achieved with dispersities as low as 1.1 for both poly(methyl methacrylate) and polystyrene. Kinetic studies showed living characteristics, and end group analysis revealed the presence of olefin-terminated polymer chains, suggesting catalytic chain transfer as a competing polymerization mechanism. Although the catalysts are not the fastest Fe ATRP mediators, they are robust and flexible. Using propylene oxide as an initiator, the complexes were active catalysts for the ring-opening polymerization of rac-lactide with moderate control. While the addition of propylene oxide has been reported as an efficient method of converting a metal-halide bond to a metal-alkoxide bond in situ, we show herein that this initiation mechanism can limit polymerization reproducibility and introduce an induction period.
Collapse
|
15
|
Group 4 metal complexes containing the salalen ligands: Synthesis, structural characterization and studies on the ROP of cyclic esters. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Ham JH, Cho J, Nayab S, Jeong JH. Synthesis and structural characterisation of copper complexes containing methylthiophene and methylfuryl derivatives of (R,R)-1,2-diaminocyclohexane as precatalysts for polymerisation of rac-lactide. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Daneshmand P, Jiménez-Santiago JL, Aragon--Alberti M, Schaper F. Catalytic-Site-Mediated Chain-End Control in the Polymerization of rac-Lactide with Copper Iminopyrrolide Complexes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pargol Daneshmand
- Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, C. P. 6128 Succ. Centre-Ville, Montréal, Quebec H3T 3J7, Canada
| | - José L. Jiménez-Santiago
- Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, C. P. 6128 Succ. Centre-Ville, Montréal, Quebec H3T 3J7, Canada
| | - Maxime Aragon--Alberti
- Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, C. P. 6128 Succ. Centre-Ville, Montréal, Quebec H3T 3J7, Canada
| | - Frank Schaper
- Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, C. P. 6128 Succ. Centre-Ville, Montréal, Quebec H3T 3J7, Canada
| |
Collapse
|
18
|
Mandal M, List M, Teasdale I, Redhammer G, Chakraborty D, Monkowius U. Palladium complexes containing imino phenoxide ligands: synthesis, luminescence, and their use as catalysts for the ring-opening polymerization of rac-lactide. MONATSHEFTE FUR CHEMIE 2018; 149:783-790. [PMID: 29681658 PMCID: PMC5906497 DOI: 10.1007/s00706-017-2119-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/26/2017] [Indexed: 11/28/2022]
Abstract
Abstract The preparation, structural characterization, luminescence, and catalytic activity of three palladium(II) complexes bearing imino phenoxide ligands are reported. The X-ray studies revealed that the complexes are mononuclear with palladium centres coordinated in a square-planar coordination environment. Two of the complexes are emissive in solution at room temperature. The catalytic activities towards the ring-opening polymerization of rac-lactide (rac-LA) were tested. Polymers with moderate molecular weights and relatively broad dispersity (Ð) were obtained. Kinetic studies revealed that the polymerization followed first-order kinetics. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00706-017-2119-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mrinmay Mandal
- 1Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria.,2School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100 USA
| | - Manuela List
- 3Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Ian Teasdale
- 4Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Günther Redhammer
- 5Materialwissenschaften und Physik, Abteilung für Mineralogie, Paris-Lodron Universität Salzburg, Hellabrunner Str. 34, 5020 Salzburg, Austria
| | - Debashis Chakraborty
- 6Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036 India
| | - Uwe Monkowius
- 7Linz School of Education, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| |
Collapse
|
19
|
Rajashekhar B, Mandal M, Chakraborty D, Ramkumar V. Homoleptic Zr and Hf Complexes of Imino/Bis(imino)phenoxide Scaffolds: Synthesis, Structural Characterization and Their Catalytic Activity in the ROP of Cyclic Esters. ChemistrySelect 2017. [DOI: 10.1002/slct.201701602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Bijja Rajashekhar
- Department of Chemistry; Indian Institute of Technology Madras; Chennai- 600 036, Tamil Nadu India
| | - Mrinmay Mandal
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103, Bihar India
| | - Debashis Chakraborty
- Department of Chemistry; Indian Institute of Technology Madras; Chennai- 600 036, Tamil Nadu India
| | - Venkatachalam Ramkumar
- Department of Chemistry; Indian Institute of Technology Madras; Chennai- 600 036, Tamil Nadu India
| |
Collapse
|
20
|
Kwon KS, Nayab S, Jeong JH. Synthesis, characterisation and X-ray structure of Cu(II) and Zn(II) complexes bearing N , N -dimethylethylenamine-camphorylimine ligands: Application in the polymerisation of rac -lactide. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.03.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Copper(II) complexes containing N,N′-bidentate N-substituted N-(pyridin-2-ylmethyl)amine: Synthesis, structure and application towards polymerization of rac-lactide. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.01.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|