1
|
Kasprzak D, Gaweł-Bęben K, Kukula-Koch W, Strzępek-Gomółka M, Wawruszak A, Woźniak S, Chrzanowska M, Czech K, Borzyszkowska-Bukowska J, Głowniak K, Matosiuk D, Orihuela-Campos RC, Jodłowska-Jędrych B, Laskowski T, Meissner HO. Lepidium peruvianum as a Source of Compounds with Anticancer and Cosmetic Applications. Int J Mol Sci 2024; 25:10816. [PMID: 39409148 PMCID: PMC11476809 DOI: 10.3390/ijms251910816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Lepidium peruvianum-an edible herbaceous biennial plant distributed in the Andes-has been used for centuries as food and as a natural medicine in treating hormonal disorders, as an antidepressant, and as an anti-osteoporotic agent. The presented study aims to prove its beneficial cosmetic and chemopreventive properties by testing the antiradical, whitening, cytotoxic, and anticancer properties of differently colored phenotypes that were extracted using three solvents: methanol, water, and chloroform, with the help of the chemometric approach to provide evidence on the impact of single glucosinolanes (seven identified compounds in the HPLC-ESI-QTOF-MS/MS analysis) on the biological activity of the total extracts. The tested extracts exhibited moderate antiradical activity, with the methanolic extract from yellow and grey maca phenotypes scavenging 49.9 ± 8.96% and 48.8% ± 0.44% of DPPH radical solution at a concentration of 1 mg/mL, respectively. Grey maca was the most active tyrosinase inhibitor, with 72.86 ± 3.42% of the enzyme activity calculated for the water extract and 75.66 ± 6.21% for the chloroform extract. The studies in cells showed no cytotoxicity towards the human keratinocyte line HaCaT in all studied extracts and a marked inhibition of cell viability towards the G361 melanoma cell line, which the presence of pent-4-enylglucosinolate, glucotropaeolin, and glucoalyssin in the samples could have caused. Given all biological activity tests combined, the three mentioned compounds were shown to be the most significant positive contributors to the results obtained, and the grey maca water extract was found to be the best source of the former compound among the tested samples.
Collapse
Affiliation(s)
- Dorota Kasprzak
- Department of Cosmetology, Faculty of Health Sciences, Wincenty Pol Academy of Applied Sciences in Lublin, Choiny 2 Street, 20-816 Lublin, Poland;
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Marcelina Strzępek-Gomółka
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Sylwia Woźniak
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 4a Chodzki Str., 20-93 Lublin, Poland; (S.W.); (D.M.)
| | - Marcelina Chrzanowska
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Karolina Czech
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Kazimierz Głowniak
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Dariusz Matosiuk
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 4a Chodzki Str., 20-93 Lublin, Poland; (S.W.); (D.M.)
| | - Rita Cristina Orihuela-Campos
- Academic Department of Stomatology for Children and Adolescents, Integrated Faculties of Medicine, Stomatology and Nursing, Cayetano Heredia Peruvian University, Av. Honorio Delgado 430, Lima 15102, Peru;
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-093 Lublin, Poland;
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Henry O. Meissner
- Therapeutic Research, TTD International Pty Ltd., 39 Leopard Ave., Elanora, Gold Coast, QLD 4221, Australia;
| |
Collapse
|
2
|
Poyraz S, Döndaş HA, Yamali C, Belveren S, Demir Y, Aydınoglu S, Döndaş NY, Taskin-Tok T, Taş S, Ülger M, Sansano JM. Design, synthesis, biological evaluation and docking analysis of pyrrolidine-benzenesulfonamides as carbonic anhydrase or acetylcholinesterase inhibitors and antimicrobial agents. J Biomol Struct Dyn 2024; 42:3441-3458. [PMID: 37232497 DOI: 10.1080/07391102.2023.2214224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
The synthesis and biological assessment of novel multi-functionalized pyrrolidine-containing benzenesulfonamides were reported along with their antimicrobial, antifungal, CAs inhibition, and AChE inhibition as well as DNA-binding effects. The chemical structure of the compounds was elucidated by using FTIR, NMR, and HRMS. Compound 3b, which had Ki values of 17.61 ± 3.58 nM (hCA I) and 5.14 ± 0.61 nM (hCA II), was found the be the most potent CAs inhibitor. Compounds 6a and 6b showed remarkable AChE inhibition effects with Ki values 22.34 ± 4.53 nM and 27.21 ± 3.96 nM in comparison to tacrine. Compounds 6a-6c had moderate antituberculosis effect on M. tuberculosis with a MIC value of 15.62 μg/ml. Compounds had weaker antifungal and antibacterial activity in the range of MIC 500-62.5 μg/ml against standard bacterial and fungal strains. Besides these above, molecular docking studies were performed to examine and evaluate the interaction of the remarkable compounds (3b, 6a and 6b) against the current enzymes (CAs and AChE). Novel compounds gained interest in terms of enzyme inhibitory potencies. Therefore, the most potent enzyme inhibitors may be considered lead compounds to be modified for further research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samet Poyraz
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - H Ali Döndaş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Cem Yamali
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - Samet Belveren
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Türkiye
| | - Sabriye Aydınoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - Naciye Yaktubay Döndaş
- Department of Pharmacology, Faculty of Medicine, Çukurova University, Balcalı, Adana, Türkiye
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Türkiye
- gDepartment of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Türkiye
| | - Senanur Taş
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Mahmut Ülger
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Türkiye
| | - Jose M Sansano
- Department of Organic Chemistry, Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, and Instituto de Síntesis Orgánica (ISO), Alicante, Spain
| |
Collapse
|
3
|
Poyraz S, Döndaş HA, Döndaş NY, Sansano JM. Recent insights about pyrrolidine core skeletons in pharmacology. Front Pharmacol 2023; 14:1239658. [PMID: 37745071 PMCID: PMC10512268 DOI: 10.3389/fphar.2023.1239658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 09/26/2023] Open
Abstract
To overcome numerous health disorders, heterocyclic structures of synthetic or natural origin are utilized, and notably, the emergence of various side effects of existing drugs used for treatment or the resistance of disease-causing microorganisms renders drugs ineffective. Therefore, the discovery of potential therapeutic agents that utilize different modes of action is of utmost significance to circumvent these constraints. Pyrrolidines, pyrrolidine-alkaloids, and pyrrolidine-based hybrid molecules are present in many natural products and pharmacologically important agents. Their key roles in pharmacotherapy make them a versatile scaffold for designing and developing novel biologically active compounds and drug candidates. This review aims to provide an overview of recent advancements (especially during 2015-2023) in the exploration of pyrrolidine derivatives, emphasizing their significance as fundamental components of the skeletal structure. In contrast to previous reviews that have predominantly focused on a singular biological activity associated with these molecules, this review consolidates findings from various investigations encompassing a wide range of important activities (antimicrobial, antiviral, anticancer, anti-inflammatory, anticonvulsant, cholinesterase inhibition, and carbonic anhydrase inhibition) exhibited by pyrrolidine derivatives. This study is also anticipated to serve as a valuable resource for drug research and development endeavors, offering significant insights and guidance.
Collapse
Affiliation(s)
- Samet Poyraz
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
| | - H. Ali Döndaş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Adana, Türkiye
| | | | - José M. Sansano
- Department of Organic Chemistry, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto de Síntesis Orgánica (ISO), University of Alicante, Alicante, Spain
| |
Collapse
|
4
|
Poyraz S, Döndaş HA, Sansano JM, Belveren S, Yamali C, Ülger M, Döndaş NY, Sağlık BN, Pask CM. N-Benzoylthiourea-pyrrolidine carboxylic acid derivatives bearing an imidazole moiety: Synthesis, characterization, crystal structure, in vitro ChEs inhibition, and antituberculosis, antibacterial, antifungal studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Fagundes TR, Bortoleti B, Camargo P, Concato V, Tomiotto-Pellissier F, Carloto A, Panis C, Bispo M, Junior FM, Conchon-Costa I, Pavanelli W. Patterns of Cell Death Induced by Thiohydantoins in Human MCF-7 Breast Cancer Cells. Anticancer Agents Med Chem 2021; 22:1592-1600. [PMID: 34382528 DOI: 10.2174/1871520621666210811102441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Conventional therapies for breast cancer is still a challenge due to use of cytotoxic drugs not highly effective with major adverse effects. Thiohydantoins, are biologically active heterocyclic compounds reported by several biological activities, including anticarcinogenic properties, i.e., this work aimed to assess the use of thiohydantoin as a potential antitumor agent against MCF-7 breast cancer cells. METHODS MTT and neutral red assays were used to assess the possible cytotoxic activity of compounds against MCF-7 cells. Cell volume measurement and analysis were performed by flow cytometry, fluorescence analysis was carried out to determine patterns of cell death induced by thiohydantoins. RESULTS The treatment with micromolar doses of thiohydantoins promoted a decrease in the viability of MCF-7 breast tumor cells. Also were observed the increase in ROS and NO production, reduction in cell volume, loss of membrane integrity, mitochondrial depolarization, and increased fluorescence for annexin V and caspase-3. These findings indicate cell death by apoptosis and increased formation of autophagic vacuoles and stopping the cell cycle in the G1/ G0 phase. CONCLUSIONS Our results indicate that thiohydantoins are cytotoxic to breast tumor cells, and this effect is linked to the increase in ROS production. This phenomenon changes tumorigenic pathways, that lead to a halt of the cell cycle in G1/G0, an important checkpoint for DNA errors, which may have altered the process by which cells produce energy, causing a decrease in mitochondrial viability and thus leading to the apoptotic process. Furthermore, the results indicate increased autophagy, a vital process linked to a decrease in lysosomal viability and considered as a cell death and tumor suppression mechanism.
Collapse
Affiliation(s)
- Tatiane Renata Fagundes
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR. Brazil
| | - Bruna Bortoleti
- Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR. Brazil
| | - Priscila Camargo
- Laboratory of Properties and Synthesis of Organic Substances, Department of Chemistry, Center of Exact Sciences, Londrina State University, PR. Brazil
| | - Vírgínia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR. Brazil
| | | | - Amanda Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR. Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of Western Paraná, Francisco Beltrão, Paraná. Brazil
| | - Marcelle Bispo
- Laboratory of Properties and Synthesis of Organic Substances, Department of Chemistry, Center of Exact Sciences, Londrina State University, PR. Brazil
| | - Fernando Macedo Junior
- Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR. Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR. Brazil
| | - Wander Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR. Brazil
| |
Collapse
|
6
|
de Carvalho PGC, Ribeiro JM, Garbin RPB, Nakazato G, Yamada Ogatta SF, de Fátima Â, de Lima Ferreira Bispo M, Macedo F. Synthesis and Antimicrobial Activity of Thiohydantoins Obtained from L-Amino Acids. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666181212153011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Thiohydantoins are an important class of heterocyclic compounds in drug
discovery since they are related to a wide range of biological properties including antimicrobial activity.
Objective:
The objective of this study was to synthesize a series of thiohydantoins derived from Laminoacids
and to evaluated their inhibitory effect on the growth of Gram-negative and Grampositive
bacteria.
Methods:
All title compounds were synthetized by reaction of L-amino acids with thiourea or ammonium
thiocyanate. Their antimicrobial activities were evaluated against bacterial strains by broth
microdilution assays. The time-kill kinetics, the antibiofilm activity and the cytotoxicity to mammalian
cells were determined for the compound that exhibited the best antimicrobial profile (1b).
Results:
Eleven thiohydantoins were readily obtained in good yields (52-95%). In general, thiohydantoins
were more effective against Gram-positive bacteria. Compound 1b (derived from Lalanine)
showed the best antibacterial activity against Staphylococcus epidermis ATCC 12228 and
S. aureus BEC 9393 with MIC values of 940 and 1921 µM, respectively. The time-kill kinetics
demonstrated time-dependent bactericidal effect in both strains for this derivative. Besides, 1b also
exhibited antibacterial activity against biofilms of S. epidermidis ATCC 12228, leading to a 40%
reduction in their metabolic activity compared to the untreated control. No cytotoxicity of 1b to
mammalian cells was observed at MIC values.
Conclusion:
The data reported herein indicate relevant antimicrobial activity of thiohydantoins derived
from L-aminoacid, mainly 1b, as potential pharmacophore to guide further chemical modification
aiming at the search for new and improved antimicrobial agents.
Collapse
Affiliation(s)
| | - Jhonatan Macedo Ribeiro
- Departamento de Microbiologia, Centro de Ciencias Biologicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Renata Perugini Biasi Garbin
- Departamento de Microbiologia, Centro de Ciencias Biologicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Gerson Nakazato
- Departamento de Microbiologia, Centro de Ciencias Biologicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Sueli Fumie Yamada Ogatta
- Departamento de Microbiologia, Centro de Ciencias Biologicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Ângelo de Fátima
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fernando Macedo
- Departamento de Quimica, Centro de Ciencias Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
7
|
Belveren S, Poyraz S, Pask CM, Ülger M, Sansano JM, Ali Döndaş H. Synthesis and biological evaluation of platinum complexes of highly functionalized aroylaminocarbo-N-thioyl prolinate containing tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione moieties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Akbas E, Ergan E, Sahin E, Ekin S, Cakir M, Karakus Y. Synthesis, characterization, antioxidant properties and DFT calculation of some new pyrimidine derivatives. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2018.1550489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Esvet Akbas
- Department of Chemistry, Faculty of Science, University of Van Yuzuncu Yil, Van, Turkey
| | - Erdem Ergan
- Van Security Vocational School, University of Van Yuzuncu Yil, Van, Turkey
| | - Ertan Sahin
- Department of Chemistry, Ataturk University, Erzurum, Turkey
| | - Suat Ekin
- Department of Chemistry, Faculty of Science, University of Van Yuzuncu Yil, Van, Turkey
| | - Metin Cakir
- Department of Chemistry, Faculty of Science, University of Van Yuzuncu Yil, Van, Turkey
| | - Yagmur Karakus
- Department of Chemistry, Faculty of Science, University of Van Yuzuncu Yil, Van, Turkey
| |
Collapse
|
9
|
Huang YJ, Peng XR, Qiu MH. Progress on the Chemical Constituents Derived from Glucosinolates in Maca (Lepidium meyenii). NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:405-412. [PMID: 30151716 PMCID: PMC6224809 DOI: 10.1007/s13659-018-0185-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/24/2018] [Indexed: 05/07/2023]
Abstract
Maca (Lepidium meyenii Walp.), a famous food supplement, has drawn an unprecedented international interest over the last two decades. It was assumed that glucosinolates, macamides, macaenes, and alkaloids are the main bioactive components of Maca before. Recently, a series of novel thiohydantoins which generally exhibit a variety of activities have been isolated from Maca. This review focuses on the progress on the main bioactive components of Maca and their biosynthetic pathway, which indicates that macamides, thiohydantoins, and some alkaloids may originate from glucosinolates. Interestingly, thiohydantoins from Maca are the first type of thiohydantoin derivatives to be found from a natural source and may contribute to some significant effects of Maca.
Collapse
Affiliation(s)
- Yan-Jie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
10
|
Study of the anti(myco)bacterial and antitumor activities of prolinate and N-amidocarbothiolprolinate derivatives based on fused tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione, bearing an indole ring. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2286-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|