1
|
Miele M, Smajić A, Pace V. The Versatility of the Roskamp Homologation in Synthesis. Molecules 2025; 30:1192. [PMID: 40141968 PMCID: PMC11944290 DOI: 10.3390/molecules30061192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Modern organic synthesis continues to benefit from the flexibility of α-diazo carbonyl intermediates. In the context of homologation processes, the Roskamp reaction-first introduced in 1989-has become a valuable tool due to its selectivity and mild condition reactions for accessing important synthons amenable to further functionalization as β-keto esters. The fine-tuning of reaction parameters-including the nature of Lewis acids, solvents, and temperature-has enabled the development of catalyzed continuous-flow methodologies, as well as a series of asymmetric variants characterized by high transformation rates, excellent stereocontrol, and formidable chemoselectivity. This review aims to emphasize the attractive features of the Roskamp reaction and its applicability for addressing challenging homologation processes.
Collapse
Affiliation(s)
- Margherita Miele
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy;
| | - Aljoša Smajić
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria;
| | - Vittorio Pace
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy;
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria;
| |
Collapse
|
2
|
Michalak O, Żurawicka S, Kubiszewski M, Krzeczyński P, Leś A, Filipek S, Cybulski M. Experimental verification of halomethyl carbinol synthesis from carbonyl compounds using a TiCl 4-Mg bimetallic complex promoter. RSC Adv 2024; 14:39609-39617. [PMID: 39687337 PMCID: PMC11648366 DOI: 10.1039/d4ra07250b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024] Open
Abstract
A critical evaluation of the feasibility of a previously published method for synthesising halomethyl carbinols from carbonyl compounds and CH2Br2 or CH2Cl2 using a bimetallic TiCl4-Mg complex is presented. The synthesis of compounds lacking the -CH2- group in their structure was achieved by following the procedures proposed in the reference literature or by introducing modifications to selected process parameters. These compounds were not identified as expected β-halohydrins but as products of reductive dimerisation or subsequent pinacolic rearrangement of carbonyl substrates. This paper proposes a formation mechanism of vicinal 1,2-diols in the presence of a TiCl4-Mg system, supported by experimental data and theoretical DFT calculations (DFT/B3LYP).
Collapse
Affiliation(s)
- Olga Michalak
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175
| | - Sylwia Żurawicka
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175
| | - Marek Kubiszewski
- Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland
| | - Piotr Krzeczyński
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175
| | - Andrzej Leś
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Sławomir Filipek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Marcin Cybulski
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175
| |
Collapse
|
3
|
Villablanca D, Gazzari S, Herrera B. The study of the PES and the reaction mechanism between ketene and Lithium Carbenoids and the formation of cyclopropanone. Theor Chem Acc 2023. [DOI: 10.1007/s00214-023-02965-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
4
|
Hilt G. The Synthetic Approaches to 1,2-Chlorohydrins. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractThis short review highlights the hitherto realised synthetic approaches towards organic 1,2-chlorohydrins by functionalisation of alkenes (i.e., 1,2-chlorohydroxylation), which is the most prominent access route to this class of compounds. Also, some other synthetic approaches involving the reduction of α-chloroketones, the epoxide opening ring by chloride anions and the utilisation of Grignard reagents for the synthesis of these compounds and chlorination of allylic alcohols are highlighted. Finally, enzymatic reactions for the formation of chlorohydrins are briefly summarised followed by a short view on natural products containing this moiety.1 Introduction2 Applications for the Synthesis of 1,2-Chlorohydrins2.1 Chlorohydroxylation of Alkenes2.2 Reduction of Chloroketones2.3 Metalorganic Reagents2.4 Epoxide Ring Opening2.5 Chlorination of Allylic Alcohols2.6 Biochemical Methods2.7 Selected Applications in Natural Product Total Synthesis3 Conclusion
Collapse
|
5
|
Synthetic Access to Aromatic α-Haloketones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113583. [PMID: 35684526 PMCID: PMC9182500 DOI: 10.3390/molecules27113583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
α-Haloketones play an essential role in the synthesis of complex N-, S-, O-heterocycles; of which some exhibit a remarkable biological activity. Research further illustrated that α-bromo-, α-chloro-, and α-iodoketones are key precursors for blockbuster pharmacological compounds. Over the past twenty years, substantial advances have been made in the synthesis of these industrially relevant building blocks. Efforts have focused on rendering the synthetic protocols greener, more effective and versatile. In this survey, we summarised and thoroughly evaluated the progress of the field, established in the past two decades, in terms of generality, efficacy and sustainability.
Collapse
|
6
|
Ielo L, Miele M, Pillari V, Senatore R, Mirabile S, Gitto R, Holzer W, Alcántara AR, Pace V. Taking advantage of lithium monohalocarbenoid intrinsic α-elimination in 2-MeTHF: controlled epoxide ring-opening en route to halohydrins. Org Biomol Chem 2021; 19:2038-2043. [PMID: 33599644 DOI: 10.1039/d0ob02407d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intrinsic degradative α-elimination of Li carbenoids somehow complicates their use in synthesis as C1-synthons. Nevertheless, we herein report how boosting such an α-elimination is a straightforward strategy for accomplishing controlled ring-opening of epoxides to furnish the corresponding β-halohydrins. Crucial for the development of the method is the use of the eco-friendly solvent 2-MeTHF, which forces the degradation of the incipient monohalolithium, due to the very limited stabilizing effect of this solvent on the chemical integrity of the carbenoid. With this approach, high yields of the targeted compounds are consistently obtained under very high regiocontrol and, despite the basic nature of the reagents, no racemization of enantiopure materials is observed.
Collapse
Affiliation(s)
- Laura Ielo
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria. and University of Turin - Department of Chemistry, Via P. Giuria 7, 10125, Turin, Italy
| | - Margherita Miele
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria.
| | - Veronica Pillari
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria.
| | - Raffaele Senatore
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria.
| | - Salvatore Mirabile
- University of Messina - Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Palatucci, 13, 98168 Messina, Italy
| | - Rosaria Gitto
- University of Messina - Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Palatucci, 13, 98168 Messina, Italy
| | - Wolfgang Holzer
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria.
| | - Andrés R Alcántara
- Complutense University of Madrid - Department of Chemistry in Pharmaceutical Sciences, Plaza de Ramón y Cajal, s/n, Madrid, Spain.
| | - Vittorio Pace
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14, 1090, Vienna, Austria. and University of Turin - Department of Chemistry, Via P. Giuria 7, 10125, Turin, Italy
| |
Collapse
|
7
|
Ielo L, Pace V, Pillari V, Miele M, Castiglione D. Carbenoid-Mediated Homologation Tactics for Assembling (Fluorinated) Epoxides and Aziridines. Synlett 2020. [DOI: 10.1055/s-0040-1706404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Homologation strategies provide highly versatile tools in organic synthesis for the introduction of a CH2 group into a given carbon skeleton. The operation can result in diverse structural motifs by tuning of the reaction conditions and the nature of the homologating agent. In this Account, concisely contextualizing our work with lithium carbenoids (LiCH2X, LiCHXY etc) for homologating carbon-centered electrophiles, we focus on the assembly of three-membered cycles featuring fluorinated substituents. Two illustrative case studies are considered: (1) the development and employment of fluorinated carbenoids en route to rare α-fluoroepoxides and aziridines, and (2) the installation of up to halomethylenic groups on trifluoroimidoylacetyl chlorides (TFAICs) for preparing CF3-containing halo- and halomethylaziridines. Collectively, we demonstrate that the initial homologation event generated by the installation of the carbenoid, upon modulation of the conditions, serves as a tool for creating fluorinated building blocks in a single operation.
Collapse
Affiliation(s)
- Laura Ielo
- University of Vienna, Department of Pharmaceutical Chemistry
| | | | | | | | | |
Collapse
|
8
|
Urbina A, Llor N, Barbieri MV, Bosch J, Amat M. Enantioselective formal synthesis of the marine macrolide (-)-callyspongiolide. Chem Commun (Camb) 2020; 56:5536-5539. [PMID: 32297621 DOI: 10.1039/d0cc01978j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A short enantioselective synthesis of the macrocyclic core 19 of callyspongiolide, involving a homocrotylboration of aldehyde 4, a Still-Genari olefination, an esterification with alcohol 17, and a ring-closing metathesis, is reported.
Collapse
Affiliation(s)
- Aina Urbina
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona-08028, Spain.
| | - Núria Llor
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona-08028, Spain.
| | - Maria Vittoria Barbieri
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona-08028, Spain.
| | - Joan Bosch
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona-08028, Spain.
| | - Mercedes Amat
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona-08028, Spain.
| |
Collapse
|