1
|
Kamzolova SV, Samoilenko VA, Lunina JN, Morgunov IG. Large-Scale Production of Isocitric Acid Using Yarrowia lipolytica Yeast with Further Down-Stream Purification. BIOTECH 2023; 12:biotech12010022. [PMID: 36975312 PMCID: PMC10046092 DOI: 10.3390/biotech12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Isocitric acid (ICA) refers to a group of promising regulators of energy metabolism which has antistress, antihypoxic, and antioxidant activities. In this paper, we reported a process of ICA production from rapeseed oil using yeast Yarrowia lipolytica VKM Y-2373 in a 500-L fermentor. The producer synthesized 64.1 g/L ICA with a product yield of 0.72 g/g and a productivity 0.54 g/L·h. We also developed an effective purification method, including a cell separation, clarification, concentration, acidification, and crystallization process, which resulted in the formation of the crystals of monopotassium salt of ICA with a purity of 99.0–99.9%. To the best of our knowledge, this is the first report on an ICA production process at an upscaled bioreactor level.
Collapse
|
2
|
Effect of Metabolic Regulators and Aeration on Isocitric Acid Synthesis by Yarrowia lipolytica Grown on Ester-Aldehyde Fraction. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Isocitric acid (ICA) has found wide application in medicine as a promising compound with powerful antioxidant activity to combat oxidative stress. In the known microbiological processes of ICA production by non-conventional yeast Yarrowia lipolytica, the pure carbon sources are commonly used. ICA can be also synthetized by Y. lipolytica from ester-aldehyde fraction (EAF)-waste of the ethanol production process. A highly effective method of ICA production from EAF based on regulation of key enzymes (aconitate hydratase and isocitrate lyase) by metabolic regulators (iron and itaconic acid) and aeration was developed. It is recommended to cultivate Y. lipolytica VKM Y-2373 under nitrogen deficiency conditions, a high aeration (60% of air saturation), an addition of 15 mM itaconic acid, and 2.4 mg/L iron. Under optimal conditions, Y. lipolytica VKM Y-2373 produced 83 g/L ICA with isocitrate to citrate ratio of 4.1:1 and mass yield of 1.1 g/g. The putative mechanism of ICA overproduction from EAF by Y. lipolytica was suggested.
Collapse
|
3
|
Abstract
There is ever increasing evidence that isocitric acid can be used as a promising compound with powerful antioxidant activity to combat oxidative stress. This work demonstrates the possibility of using waste product from the alcohol industry (so-called ester-aldehyde fraction) for production of isocitric acid by yeasts. The potential producer of isocitric acid from this fraction, Yarrowia lipolytica VKM Y-2373, was selected by screening of various yeast cultures. The selected strain showed sufficient growth and good acid formation in media with growth-limiting concentrations of nitrogen, sulfur, phosphorus, and magnesium. A shortage of Fe2+ and Ca2+ ions suppressed both Y. lipolytica growth and formation of isocitric acid. The preferential synthesis of isocitric acid can be regulated by changing the nature and concentration of nitrogen source, pH of cultivation medium, and concentration of ester-aldehyde fraction. Experiments in this direction allowed us to obtain 65 g/L isocitric acid with a product yield (YICA) of 0.65 g/g in four days of cultivation.
Collapse
|
4
|
Abstract
The microbiological production of isocitric acid (ICA) is more preferable for its application in medicine and food, because the resulting product contains only the natural isomer—threo-DS. The aim of the present work was to study ICA production by yeast using sunflower oil as carbon source. 30 taxonomically different yeast strains were assessed for their capability for ICA production, and Y. lipolytica VKM Y-2373 was selected as a promising producer. It was found that ICA production required: the limitation of Y. lipolytica growth by nitrogen, phosphorus, sulfur or magnesium, and an addition of iron, activating aconitate hydratase, a key enzyme of isocitrate synthesis. Another regulatory approach capable to shift acid formation to a predominant ICA synthesis is the use of inhibitors (itaconic and oxalic acids), which blocks the conversion of isocitrate at the level of isocitrate lyase. It is recommended to cultivate Y. lipolytica VKM Y-2373 under nitrogen deficiency conditions with addition of 1.5 mg/L iron and 30 mM itaconic acid. Such optimized nutrition medium provides 70.6 g/L ICA with a ratio between ICA and citric acid (CA) equal 4:1, a mass yield (YICA) of 1.25 g/g and volume productivity (QICA) of 1.19 g/L·h.
Collapse
|
5
|
Yuzbasheva EY, Scarcia P, Yuzbashev TV, Messina E, Kosikhina IM, Palmieri L, Shutov AV, Taratynova MO, Amaro RL, Palmieri F, Sineoky SP, Agrimi G. Engineering Yarrowia lipolytica for the selective and high-level production of isocitric acid through manipulation of mitochondrial dicarboxylate-tricarboxylate carriers. Metab Eng 2020; 65:156-166. [PMID: 33161142 DOI: 10.1016/j.ymben.2020.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 11/18/2022]
Abstract
During cultivation under nitrogen starvation, Yarrowia lipolytica produces a mixture of citric acid and isocitric acid whose ratio is mainly determined by the carbon source used. We report that mitochondrial succinate-fumarate carrier YlSfc1 controls isocitric acid efflux from mitochondria. YlSfc1 purified and reconstituted into liposomes transports succinate, fumarate, oxaloacetate, isocitrate and α-ketoglutarate. YlSFC1 overexpression determined the inversion of isocitric acid/citric acid ratio towards isocitric acid, resulting in 33.4 ± 1.9 g/L and 43.3 ± 2.8 g/L of ICA production in test-tube cultivation with glucose and glycerol, respectively. These titers represent a 4.0 and 6.3-fold increase compared to the wild type. YlSFC1 gene expression was repressed in the wild type strain grown in glucose-based medium compared to olive oil medium explaining the reason for the preferred citric acid production during Y. lipolytica growth on carbohydrates. Coexpression of YlSFC1 and adenosine monophosphate deaminase YlAMPD genes together with inactivation of citrate mitochondrial carrier YlYHM2 gene enhanced isocitric acid accumulation up to 41.4 ± 4.1 g/L with an isocitric acid/citric acid ratio of 14.3 in a small-scale cultivation with glucose as a carbon source. During large-scale cultivation with glucose pulse-feeding, the engineered strain produced 136.7 ± 2.5 g/L of ICA with a process selectivity of 88.1%, the highest reported titer and selectivity to date. These results represent the first reported isocitric acid secretion by Y. lipolytica as a main organic acid during cultivation on carbohydrate. Moreover, we demonstrate for the first time that the replacement of one mitochondrial transport system for another can be an efficient tool for switching product accumulation.
Collapse
Affiliation(s)
- Evgeniya Y Yuzbasheva
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; NRC «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia; BioMediCan Inc., 40471 Encyclopedia Circle, Fremont, 94538, CA, USA.
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Campus Universitario, Via Orabona 4, 70125, Bari, Italy
| | - Tigran V Yuzbashev
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Eugenia Messina
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Campus Universitario, Via Orabona 4, 70125, Bari, Italy
| | - Iuliia M Kosikhina
- NRC «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia; NRC «Kurchatov Institute», 1 Kurchatov Square, Moscow, 123182, Russia
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Campus Universitario, Via Orabona 4, 70125, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Campus Universitario, Via Orabona 4, 70125, Bari, Italy
| | - Artem V Shutov
- NRC «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia; NRC «Kurchatov Institute», 1 Kurchatov Square, Moscow, 123182, Russia
| | - Maria O Taratynova
- NRC «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia; NRC «Kurchatov Institute», 1 Kurchatov Square, Moscow, 123182, Russia
| | - Rodrigo Ledesma Amaro
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Campus Universitario, Via Orabona 4, 70125, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Campus Universitario, Via Orabona 4, 70125, Bari, Italy
| | - Sergey P Sineoky
- NRC «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia; NRC «Kurchatov Institute», 1 Kurchatov Square, Moscow, 123182, Russia
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Campus Universitario, Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
6
|
Fickers P, Cheng H, Sze Ki Lin C. Sugar Alcohols and Organic Acids Synthesis in Yarrowia lipolytica: Where Are We? Microorganisms 2020; 8:E574. [PMID: 32326622 PMCID: PMC7232202 DOI: 10.3390/microorganisms8040574] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023] Open
Abstract
Sugar alcohols and organic acids that derive from the metabolism of certain microorganisms have a panoply of applications in agro-food, chemical and pharmaceutical industries. The main challenge in their production is to reach a productivity threshold that allow the process to be profitable. This relies on the construction of efficient cell factories by metabolic engineering and on the development of low-cost production processes by using industrial wastes or cheap and widely available raw materials as feedstock. The non-conventional yeast Yarrowia lipolytica has emerged recently as a potential producer of such metabolites owing its low nutritive requirements, its ability to grow at high cell densities in a bioreactor and ease of genome edition. This review will focus on current knowledge on the synthesis of the most important sugar alcohols and organic acids in Y. lipolytica.
Collapse
Affiliation(s)
- Patrick Fickers
- Microbial Process and Interactions, TERRA Teaching and Research Centre, University of Liege—Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
| |
Collapse
|
8
|
Morgunov IG, Kamzolova SV, Karpukhina OV, Bokieva SB, Inozemtsev AN. Biosynthesis of isocitric acid in repeated-batch culture and testing of its stress-protective activity. Appl Microbiol Biotechnol 2019; 103:3549-3558. [PMID: 30852660 DOI: 10.1007/s00253-019-09729-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
Biosynthesis of Ds(+)-threo-isocitric acid from ethanol in the Yarrowia lipolytica batch and repeated-batch cultures was studied. Repeated-batch cultivation was found to provide for a good biosynthetic efficiency of the producer for as long as 748 h, probably due to maintenance of high activities of enzymes involved in the biosynthesis of isocitric acid. Under optimal repeated-batch cultivation conditions, the producer accumulated 109.6 g/L Ds(+)-threo-isocitric acid with a production rate of 1.346 g/L h. The monopotassium salt of isocitric acid isolated from the culture liquid and purified to 99.9% was found to remove neurointoxication, to restore memory, and to improve the learning of laboratory rats intoxicated with lead and molybdenum salts. Taking into account the fact that the neurotoxic effect of heavy metals is mainly determined by oxidative stress, the aforementioned favorable action of isocitric acid on the intoxicated rats can be explained by its antioxidant activity among other pharmacological effects.
Collapse
Affiliation(s)
- Igor G Morgunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia.
| | - Svetlana V Kamzolova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Olga V Karpukhina
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina str, Moscow, 119991, Russia
| | - Svetlana B Bokieva
- Khetagurov North Ossetian State University, 44-46 Vatutina str, Vladikavkaz, North Ossetia, 362025, Russia
| | - Anatoly N Inozemtsev
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russia
| |
Collapse
|