1
|
Dangerfield EM, Meijlink MA, Hunt-Painter AA, Nasseri SA, Withers SG, Stocker BL, Timmer MSM. Synthesis and glycosidase inhibition of 3,4,5-trihydroxypiperidines using a one-pot amination-cyclisation cascade reaction. Carbohydr Res 2024; 543:109198. [PMID: 38996783 DOI: 10.1016/j.carres.2024.109198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Trihydroxypiperidines are a therapeutically valuable class of iminosugar. We applied a one-pot amination-cyclisation cascade reaction to synthesise 3,4,5-trihydroxypiperidine stereoisomers in three steps from commercially available pentoses and in excellent overall yields. Using our methodology, the yields of the syntheses of meso-1, meso-2 and 3L are the highest reported to date. The synthetic methodology was readily extended to the three-step synthesis of N-alkyl derivatives by replacing the ammonia nitrogen source with a primary amine. The trihydroxypiperidines and N-alkyl analogues were screened for enzyme inhibitory activity using Fabrazyme (Fabry disease), GCase (Gaucher's disease), Agrobacterium sp. β-glucosidase, and Escherichia coli β-galactosidase. N-Phenylethyl 3,4,5-trihydroxypiperidine (N-phenylethyl-1-(3R,4R,5S)-piperidine-3,4,5-triol) showed good inhibitory activity of Fabrazyme (Ki = 46 μM). This activity was abolished when the N-phenylethyl group was removed or replaced with a non-aromatic alkyl chain.
Collapse
Affiliation(s)
- Emma M Dangerfield
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Michael A Meijlink
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Alex A Hunt-Painter
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Seyed A Nasseri
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C, Canada
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
2
|
Prasch H, Wolfsgruber A, Thonhofer M, Culum A, Mandl C, Weber P, Zündel M, Nasseri SA, Gonzalez Santana A, Tegl G, Nidetzky B, Gruber K, Stütz AE, Withers SG, Wrodnigg TM. Ligand-Directed Chemistry on Glycoside Hydrolases - A Proof of Concept Study. Chembiochem 2023; 24:e202300480. [PMID: 37715738 DOI: 10.1002/cbic.202300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023]
Abstract
Selective covalent labelling of enzymes using small molecule probes has advanced the scopes of protein profiling. The covalent bond formation to a specific target is the key step of activity-based protein profiling (ABPP), a method which has become an indispensable tool for measuring enzyme activity in complex matrices. With respect to carbohydrate processing enzymes, strategies for ABPP so far involve labelling the active site of the enzyme, which results in permanent loss of activity. Here, we report in a proof of concept study the use of ligand-directed chemistry (LDC) for labelling glycoside hydrolases near - but not in - the active site. During the labelling process, the competitive inhibitor is cleaved from the probe, departs the active site and the enzyme maintains its catalytic activity. To this end, we designed a building block synthetic concept for small molecule probes containing iminosugar-based reversible inhibitors for labelling of two model β-glucosidases. The results indicate that the LDC approach can be adaptable for covalent proximity labelling of glycoside hydrolases.
Collapse
Affiliation(s)
- Herwig Prasch
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Andreas Wolfsgruber
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Martin Thonhofer
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - André Culum
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Christoph Mandl
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Patrick Weber
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Melanie Zündel
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Seyed A Nasseri
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Andres Gonzalez Santana
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Gregor Tegl
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, Petersgasse 10-12/I, 8010, Graz, Austria
| | - Bernd Nidetzky
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, Petersgasse 10-12/I, 8010, Graz, Austria
| | - Karl Gruber
- University of Graz, Institute of Molecular Bioscience, Humboldtstraße 50/III, 8010, Graz, Austria
| | - Arnold E Stütz
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Stephen G Withers
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Tanja M Wrodnigg
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| |
Collapse
|
3
|
Verma AK, Yadav V, Bhojiya AA, Upadhyay SK, Singh N, Pareek SS, Ashid M, Ahmed SF, Hossain MS. 'Synthesis, antiviral activity, molecular docking, and molecular dynamics studies of ethoxy phthalimide pyrazole derivatives against Cytomegalovirus and Varicella-Zoster virus: potential consequences and strategies for developing new antiviral treatments'. J Biomol Struct Dyn 2023; 42:13903-13922. [PMID: 37965748 DOI: 10.1080/07391102.2023.2279278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Substituted ethoxy phthalimide pyrazole derivatives (6a-e) have been produced using a one-pot synthesis technique. Spectral analysis was used to establish the molecular structure of the synthesized compounds, and they were examined in silico and in vitro for their ability to bind to and inhibit replication of the AD-169 strain, the Davis strain of CMV, the OKA strain and the 07/1 strain of Varicella-Zoster virus (VZV). Molecular Docking was used to estimate the binding mechanism and energy of compounds 4, 6a-e to their respective target proteins, thymidine kinase (TK), Varicella-Zoster protease (VZP) of VZV and tegument protein pp71 (TPpp71) of Cytomegalovirus (CMV). The MIC50 and EC50 were utilized to evaluate the antiviral and cytotoxic activities of test compounds in human embryonic lung (HEL) cells against the two reference medicines, Ganciclovir and Acyclovir. The chemicals studied showed a high affinity for binding sites and near binding sites of target proteins by generating H-bonds, carbon-hydrogen bonds, π-anion, π-sulfur, π-sigma, alkyl and π-alkyl interactions. All of the test compounds (6a-e) had higher binding energy than the standard medications. The ADME/T data suggests that these potential inhibitors are less toxic. Drug-protein complexes are structurally compact and demonstrate minimal conformational change in molecular dynamics (MDs) simulations, indicating stability and stiffness. MM-PBSA and post-simulation analysis can predict lead compound active cavity binding stability. By inhibiting multitargeted proteins, these synthetic compounds may improve antiviral therapy. Our research suggests that these unique synthesized chemicals may be useful and accessible adjuvant antiviral therapy for Varicella Zoster and CMV. HighlightsTwo components synthesis of substituted ethoxy phthalimide pyrazole derivatives (6a-e).Tested compounds (6a-e) have antiviral and cytotoxicity activity against CMV and Varicella-Zoster virus (VZV) in HEL cells.Compounds bind to TK, Varicella-Zoster protease (VZP) of VZV, and modeled TPpp71 of Cytomegalovirus (CMV).In comparison to reference drugs, compounds have strong binding free energy and interactions with VZV and CMV protein complexes.The RMSD, RMSF, Rg, residual correlative motion (RCM), No. of hydrogen bonds, protein secondary structure content, per-residue protein secondary structure and MM/PBSA energy calculated for the selected compound with thymidine kinase (TK), VZP of VZV, and modeled tegument protein pp71 (TPpp71) of CMV through MD simulation studies for 50 ns.In comparison to the two reference drugs, ligands/compounds were found to meet the Lipinski rule of five and to have strong biological activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Department of Life Sciences, Faculty of Science and Technology, Mewar University, Chittorgarh, Rajasthan, India
| | - Vipin Yadav
- ECH-Incubation Centre, University of Rajasthan, Jaipur, India
| | | | - Sudhir K Upadhyay
- Department of Environmental Sciences, V.B.S. Purvanchal University, Jaunpur, India
| | - Nripendra Singh
- Department of Pharmacy, VBS Purvanchal University, Jaunpur, India
| | | | - Mohammad Ashid
- Department of Chemistry, Faculty of Science and Technology, Mewar University, Chittorgarh, India
| | - Sk Faisal Ahmed
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
- Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
- Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
4
|
N-Alkylated Iminosugar Based Ligands: Synthesis and Inhibition of Human Lysosomal β-Glucocerebrosidase. Molecules 2020; 25:molecules25204618. [PMID: 33050585 PMCID: PMC7594070 DOI: 10.3390/molecules25204618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
The scope of a series of N-alkylated iminosugar based inhibitors in the d-gluco as well as d-xylo configuration towards their interaction with human lysosomal β-glucocerebrosidase has been evaluated. A versatile synthetic toolbox has been developed for the synthesis of N-alkylated iminosugar scaffolds conjugated to a variety of terminal groups via a benzoic acid ester linker. The terminal groups such as nitrile, azide, alkyne, nonafluoro-tert-butyl and amino substituents enable follow-up chemistry as well as visualisation experiments. All compounds showed promising inhibitory properties as well as selectivities for β-glucosidases, some exhibiting activities in the low nanomolar range for β-glucocerebrosidase.
Collapse
|
5
|
Rowland RJ, Wu L, Liu F, Davies GJ. A baculoviral system for the production of human β-glucocerebrosidase enables atomic resolution analysis. Acta Crystallogr D Struct Biol 2020; 76:565-580. [PMID: 32496218 PMCID: PMC7271948 DOI: 10.1107/s205979832000501x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
The lysosomal glycoside hydrolase β-glucocerebrosidase (GBA; sometimes called GBA1 or GCase) catalyses the hydrolysis of glycosphingolipids. Inherited deficiencies in GBA cause the lysosomal storage disorder Gaucher disease (GD). Consequently, GBA is of considerable medical interest, with continuous advances in the development of inhibitors, chaperones and activity-based probes. The development of new GBA inhibitors requires a source of active protein; however, the majority of structural and mechanistic studies of GBA today rely on clinical enzyme-replacement therapy (ERT) formulations, which are incredibly costly and are often difficult to obtain in adequate supply. Here, the production of active crystallizable GBA in insect cells using a baculovirus expression system is reported, providing a nonclinical source of recombinant GBA with comparable activity and biophysical properties to ERT preparations. Furthermore, a novel crystal form of GBA is described which diffracts to give a 0.98 Å resolution unliganded structure. A structure in complex with the inactivator 2,4-dinitrophenyl-2-deoxy-2-fluoro-β-D-glucopyranoside was also obtained, demonstrating the ability of this GBA formulation to be used in ligand-binding studies. In light of its purity, stability and activity, the GBA production protocol described here should circumvent the need for ERT formulations for structural and biochemical studies and serve to support GD research.
Collapse
Affiliation(s)
- Rhianna J. Rowland
- Department of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Liang Wu
- Department of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Feng Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Gideon J. Davies
- Department of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|