1
|
Gu Q, Cheng Z, Qiu X, Zeng X. Recent Advances in the Electrochemical Functionalization of Isocyanides. CHEM REC 2023; 23:e202200177. [PMID: 36126178 DOI: 10.1002/tcr.202200177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Isocyanides are well-known as efficient CO surrogates and C1 synthons in modern organic synthesis. Although tremendous efforts have been devoted to fully exploiting the reactivity of isocyanides, these transformations are primarily limited by their utilization of stoichiometric toxic chemical oxidants. With the recent resurgence of organic electrochemistry, which has considerably laid dormant over the past several decades, electrolysis has been identified as a green and powerful tool to enrich structural diversity by solely utilizing electric current as clean and inherently safe redox equivalents of stoichiometric chemical oxidants. In this regard, the unique reactivity of isocyanides has been studied in numerous electrochemical transformations. This review comprehensively highlights the most relevant progress in electrochemical strategies towards the functionalization of isocyanides up until June of 2022, with a focus on reaction outcomes and mechanisms.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Zhenfeng Cheng
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| |
Collapse
|
2
|
Waibel KA, Barther D, Malliaridou T, Moatsou D, Meier MAR. One‐Pot Synthesis of Thiocarbamates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kevin A. Waibel
- Laboratory of Applied Chemistry Institute of Biological and Chemical Systems – Functional Material Systems (IBCS-FMS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Dennis Barther
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany
| | - Triantafillia Malliaridou
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany
| | - Dafni Moatsou
- Laboratory of Applied Chemistry Institute of Biological and Chemical Systems – Functional Material Systems (IBCS-FMS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany
| | - Michael A. R. Meier
- Laboratory of Applied Chemistry Institute of Biological and Chemical Systems – Functional Material Systems (IBCS-FMS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany
| |
Collapse
|
3
|
Guan Z, Zhu S, Wang S, Wang H, Wang S, Zhong X, Bu F, Cong H, Lei A. Electrochemical Oxidative Carbon‐Atom Difunctionalization: Towards Multisubstituted Imino Sulfide Ethers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhipeng Guan
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Shuxiang Zhu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Siyuan Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Huamin Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Siyuan Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xingxing Zhong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Faxiang Bu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| |
Collapse
|
4
|
Guan Z, Zhu S, Wang S, Wang H, Wang S, Zhong X, Bu F, Cong H, Lei A. Electrochemical Oxidative Carbon-Atom Difunctionalization: Towards Multisubstituted Imino Sulfide Ethers. Angew Chem Int Ed Engl 2021; 60:1573-1577. [PMID: 33006414 DOI: 10.1002/anie.202011329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Indexed: 11/07/2022]
Abstract
Ethers (C-O/S) are ubiquitously found in a wide array of functional molecules and natural products. Nonetheless, the synthesis of imino sulfide ethers, containing an N(sp2 )=C(sp2 )-O/S fragment, still remains a challenge because of its sensitivity to acid. Developed here in is an unprecedented electrochemical oxidative carbon-atom difunctionalization of isocyanides, providing a series of novel multisubstituted imino sulfide ethers. Under metal-free and external oxidant-free conditions, isocyanides react smoothly with simple and readily available mercaptans and alcohols. Importantly, the procedure exhibited high stereoselectivities, excellent functional-group tolerance, and good efficiency on large-scale synthesis, as well as further derivatization of the products.
Collapse
Affiliation(s)
- Zhipeng Guan
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Shuxiang Zhu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Siyuan Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Huamin Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Siyuan Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xingxing Zhong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Faxiang Bu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| |
Collapse
|