1
|
Li D, Chu C, Zhao M, Hou S, Liu C. The Role of Nitric Oxide in the Growth and Development of Schizophyllum commune Under Anaerobic Conditions. Microorganisms 2025; 13:887. [PMID: 40284723 PMCID: PMC12029550 DOI: 10.3390/microorganisms13040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Nitric oxide (NO) is a widely recognized signaling molecule found across various organisms, yet its specific effects on fungal growth and development under anaerobic conditions remain underexplored. This study investigates how NO influences the growth and development of Schizophyllum commune 20R-7-F01 under anaerobic environments. The results demonstrated an increase in endogenous NO levels during mycelial growth and basidiospore germination. The addition of cPTIO, a NO scavenger, inhibited mycelial growth, delayed basidiospore germination, and reduced the expression of genes involved in basidiospore germination, highlighting the critical role of NO in fungal growth and development. On the other hand, exogenous NO supplementation accelerated mycelial growth and facilitated the formation of primordia, suggesting NO's potential as a key regulator of fungal development. These findings deepen our understanding of NO's contribution to fungal growth in anaerobic conditions and offer new perspectives on its role as a signaling molecule in the development of S. commune communities, shedding light on the metabolic regulation of anaerobic microorganisms.
Collapse
Affiliation(s)
- Dongxu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (D.L.); (C.C.); (M.Z.)
| | - Chen Chu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (D.L.); (C.C.); (M.Z.)
| | - Mengshi Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (D.L.); (C.C.); (M.Z.)
| | - Suying Hou
- College of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (D.L.); (C.C.); (M.Z.)
| |
Collapse
|
2
|
Wang D, Zhang H, Meng L, Tan X, Liu R, Gao Q, Wu Y, Zhu Y, Ren X, Li Y, Kong Q. Exogenous Nitric Oxide Induces Pathogenicity of Alternaria alternata on Huangguan Pear Fruit by Regulating Reactive Oxygen Species Metabolism and Cell Wall Modification. J Fungi (Basel) 2024; 10:726. [PMID: 39452678 PMCID: PMC11508668 DOI: 10.3390/jof10100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Black spot caused by Alternaria alternata is one of the most common postharvest diseases in fruit and vegetables. A comprehensive investigation into its pathogenicity mechanism is imperative in order to propose a targeted and effective control strategy. The effect of nitric oxide (NO) on the pathogenicity of A. alternata and its underlying mechanism was studied. The results showed that treatment with 0.5 mM L-1 of sodium nitroprusside (SNP) (NO donor) increased the lesion diameter of A. alternata in vivo and in vitro, which was 22.8% and 13.2% higher than that of the control, respectively. Exogenous NO treatment also induced endogenous NO accumulation by activating nitric oxide synthase (NOS). In addition, NO triggered an increase in reactive oxygen species (ROS) levels. NO enhanced activities and gene expression levels of NADPH oxidase (NOX), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR). Moreover, NO stimulated cell wall degrading enzymes by activating the corresponding gene expression in vivo and in vitro. These results suggested that exogenous NO promoted the pathogenicity of A. alternata by inducing ROS accumulation and activating antioxidants and cell wall degrading enzymes. The present results could establish a theoretical foundation for the targeted control of the black spot disease in pear fruit.
Collapse
Affiliation(s)
- Di Wang
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Haijue Zhang
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Lingkui Meng
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Xinyu Tan
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Rong Liu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Qingchao Gao
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yan Wu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yuhan Zhu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Xueyan Ren
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qingjun Kong
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| |
Collapse
|
3
|
Ohtsuka H, Imada K, Shimasaki T, Aiba H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. Microbiologyopen 2022; 11:e1303. [PMID: 35765188 PMCID: PMC9214231 DOI: 10.1002/mbo3.1303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistryNational Institute of Technology (KOSEN), Suzuka CollegeSuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversitySumiyoshi‐kuOsakaJapan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| |
Collapse
|
4
|
|
5
|
Takagi H. Molecular mechanisms and highly functional development for stress tolerance of the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:1017-1037. [PMID: 33836532 DOI: 10.1093/bbb/zbab022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
In response to environmental stress, microorganisms adapt to drastic changes while exerting cellular functions by controlling gene expression, metabolic pathways, enzyme activities, and protein-protein interactions. Microbial cells that undergo a fermentation process are subjected to stresses, such as high temperature, freezing, drying, changes in pH and osmotic pressure, and organic solvents. Combinations of these stresses that continue over long terms often inhibit cells' growth and lead to their death, markedly limiting the useful functions of microorganisms (eg their fermentation ability). Thus, high stress tolerance of cells is required to improve productivity and add value to fermented/brewed foods and biofuels. This review focuses on stress tolerance mechanisms, including l-proline/l-arginine metabolism, ubiquitin system, and transcription factors, and the functional development of the yeast Saccharomyces cerevisiae, which has been used not only in basic science as a model of higher eukaryotes but also in fermentation processes for making alcoholic beverages, food products, and bioethanol.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
6
|
An Insight on the Role of Nitric Oxide in Yeast Apoptosis of Curcumin-Treated Candida albicans. Curr Microbiol 2020; 77:3104-3113. [PMID: 32719888 DOI: 10.1007/s00284-020-02132-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Nitric Oxide (NO) is a widely studied molecule due to its diverse biological functions. One of its activities, induction of apoptosis, is currently an area of active investigation in mammalian cells. However, there exists little information regarding the role of NO in yeast apoptosis. In an effort to investigate the mode of action by which NO induces programmed cell death in Candida albicans, we conducted a study on curcumin, a major bioactive compound, which is known as a potential apoptosis-inducing material due to several of its biological activities. First, NO generation was evaluated upon curcumin treatment. It is widely known that NO production is closely tied to cellular respiration, which is regulated by mitochondria. An increase in NO concentration leads to the inhibition of respiration and mitochondrial dysfunction. The hallmarks of mitochondrial dysfunction include a decrease in mitochondrial membrane potential along with increased mitochondrial mass, calcium concentration and ROS generation. A specific oxidative ROS compound, superoxide ([Formula: see text]), is strongly reactive with NO to form peroxynitrite (ONOO-). ONOO- disturbs intracellular redox levels, decreasing the overall ratio of glutathione (GSH). This leads to oxidative damage in C. albicans, triggering lethal DNA damage that eventually results in apoptosis. In the present study, a nitric oxide synthase (NOS) inhibitor, L-NG-Nitroarginine Methyl Ester (L-NAME), was used in each experiment. In all experiments, L-NAME pre-treatment of cells blocked the effects induced by curcumin, which indicates that nitric oxide is a component of the overall mechanism. In conclusion, NO account for an indispensable position in apoptosis of curcumin-treated C. albicans.
Collapse
|
7
|
Velez P, Gasca-Pineda J, Riquelme M. Cultivable fungi from deep-sea oil reserves in the Gulf of Mexico: Genetic signatures in response to hydrocarbons. MARINE ENVIRONMENTAL RESEARCH 2020; 153:104816. [PMID: 31679790 DOI: 10.1016/j.marenvres.2019.104816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The estimation of oil spill effects on marine ecosystems is limited to the extent of our knowledge on the autochthonous biota. Fungi are involved in key ecological marine processes, representing a major component of post-spill communities. However, information on their functional capacities remains lacking. Herein we analyzed cultivable fungi from sediments in two oil-drilling regions of the Gulf of Mexico for their ability to tolerate and use hexadecane and 1-hexadecene as the sole carbon sources; and to evaluate gene expression profiles of key hydrocarbonoclastic taxa during utilization of these hydrocarbons. The isolated fungi showed differential sensitivity patterns towards the tested hydrocarbons under three different concentrations. Remarkably, six OTUs (Aureobasidium sp., Penicillium brevicompactum, Penicillium sp., Phialocephala sp., Cladosporium sp. 1 and 2) metabolized the tested alkane and alkene as the sole carbon sources, confirming that deep-sea fungal taxa are valuable genetic resources with potential use in bioremediation. RNA-seq results revealed distinctive gene expression profiles in the hydrocarbonoclastic fungus Penicillium sp. when using hexadecane and 1-hexadecene as the sole carbon sources, with up-regulation of genes involved in transmembrane transport, metabolism of six-carbons carbohydrates, and nitric oxide pathways.
Collapse
Affiliation(s)
- Patricia Velez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, 22860, Mexico.
| | - Jaime Gasca-Pineda
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, 22860, Mexico
| | - Meritxell Riquelme
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, 22860, Mexico.
| |
Collapse
|
8
|
Abstract
Nitric oxide (NO) is a cellular signalling molecule widely conserved among organisms, including microorganisms such as bacteria, yeasts, and fungi, and higher eukaryotes such as plants and mammals. NO is mainly produced by the activities of NO synthase (NOS) or nitrite reductase (NIR). There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR). NO homeostasis, based on the balance between NO synthesis and degradation, is important for regulating its physiological functions, since an excess of NO causes nitrosative stress due to the high reactivity of NO and NO-derived compounds. In yeast, NO may be involved in stress responses, but the role of NO and the mechanism underlying NO signalling are poorly understood due to the lack of mammalian NOS orthologs in the yeast genome. NOS and NIR activities have been observed in yeast cells, but the gene-encoding NOS and the mechanism by which NO production is catalysed by NIR remain unclear. On the other hand, yeast cells employ NOD and GSNOR to maintain intracellular redox balance following endogenous NO production, treatment with exogenous NO, or exposure to environmental stresses. This article reviews NO metabolism (synthesis, degradation) and its regulation in yeast. The physiological roles of NO in yeast, including the oxidative stress response, are also discussed. Such investigations into NO signalling are essential for understanding how NO modulates the genetics and physiology of yeast. In addition to being responsible for the pathology and pharmacology of various degenerative diseases, NO signalling may be a potential target for the construction and engineering of industrial yeast strains.
Collapse
|
9
|
Transcription factors Atf1 and Sty1 promote stress tolerance under nitrosative stress in Schizosaccharomyces pombe. Microbiol Res 2018; 206:82-90. [DOI: 10.1016/j.micres.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/28/2017] [Accepted: 10/07/2017] [Indexed: 01/22/2023]
|
10
|
Nitric oxide signaling in yeast. Appl Microbiol Biotechnol 2016; 100:9483-9497. [DOI: 10.1007/s00253-016-7827-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
|
11
|
Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast. Nitric Oxide 2016; 57:85-91. [DOI: 10.1016/j.niox.2016.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/12/2016] [Indexed: 01/31/2023]
|
12
|
Effect of Nitric Oxide on the Antifungal Activity of Oxidative Stress and Azoles Against Candida albicans. Indian J Microbiol 2016; 56:214-218. [PMID: 27570314 DOI: 10.1007/s12088-016-0580-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 12/26/2022] Open
Abstract
Nitric oxide (NO) is a small molecule with a wide range of biological activities in mammalian and bacteria. However, the role of NO in fungi, especially Candida albicans, is not clear. In this study, we confirmed the generation of endogenous NO in C. albicans, and found that the production of endogenous NO in C. albicans was associated with nitric oxide synthase pathway. Our results further indicated that the production of endogenous NO in C. albicans was reduced under oxidative stress such as menadione or H2O2 treatment. Meanwhile, exogenous NO donor, sodium nitroprusside (SNP), synergized with H2O2 against C. albicans. Interestingly, SNP could inhibit the antifungal effect of azoles against C. albicans in vitro, suggesting that NO might be involved in the resistance of C. albicans to antifungals. Collectively, this study demonstrated the production of endogenous NO in C. albicans, and indicated that NO may play an important role in the response of C. albicans to oxidative stress and azoles.
Collapse
|
13
|
Nitric oxide signaling and its role in oxidative stress response in Schizosaccharomyces pombe. Nitric Oxide 2016; 52:29-40. [DOI: 10.1016/j.niox.2015.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/14/2015] [Accepted: 11/21/2015] [Indexed: 01/19/2023]
|
14
|
Wang D, Wu M, Li S, Gao Q, Zeng Q. Artemisinin mimics calorie restriction to extend yeast lifespan via a dual-phase mode: a conclusion drawn from global transcriptome profiling. SCIENCE CHINA-LIFE SCIENCES 2015; 58:451-65. [PMID: 25682392 DOI: 10.1007/s11427-014-4736-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/17/2014] [Indexed: 12/14/2022]
Abstract
Calorie restriction (CR) promotes longevity among distinct organisms from yeast to mammals. Although CR-prolonged lifespan is believed to associate with enhanced respiratory activity, it is apparently controversial for accelerated energy consumption regardless of insufficient nutrient intake. In reconciling the contradiction of less food supply versus much metabolite dispense, we revealed a CR-based mode of dual-phase responses that encompass a phase of mitochondrial enhancement (ME) and a phase of post-mitochondrial enhancement (PME), which can be distinguished by the expression patterns and activity dynamics of mitochondrial signatures. ME is characterized by global antioxidative activation, and PME is denoted by systemic metabolic modulation. CR-mediated aging-delaying effects are replicated by artesunate, a semi-synthetic derivative of the antimalarial artemisinin that can alkylate heme-containing proteins, suggesting artesunate-heme conjugation functionally resembles nitric oxide-heme interaction. A correlation of artesunate-heme conjugation with cytochrome c oxidase activation has been established from adduct formation and activity alteration. Exogenous hydrogen peroxide also mimics CR to trigger antioxidant responses, affect signaling cascades, and alter respiratory rhythms, implying hydrogen peroxide is engaged in lifespan extension. Conclusively, artesunate mimics CR-triggered nitric oxide and hydrogen peroxide to induce antioxidative networks for scavenging reactive oxygen species and mitigating oxidative stress, thereby directing metabolic conversion from anabolism to catabolism, maintaining essential metabolic functionality, and extending life expectancy in yeast.
Collapse
Affiliation(s)
- DaTing Wang
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | | | | | | | | |
Collapse
|
15
|
Nasuno R, Aitoku M, Manago Y, Nishimura A, Sasano Y, Takagi H. Nitric oxide-mediated antioxidative mechanism in yeast through the activation of the transcription factor Mac1. PLoS One 2014; 9:e113788. [PMID: 25423296 PMCID: PMC4244153 DOI: 10.1371/journal.pone.0113788] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae possesses various defense mechanisms against environmental stresses that generate reactive oxygen species, leading to growth inhibition or cell death. Our recent study showed a novel antioxidative mechanism mediated by nitric oxide (NO) in yeast cells, but the mechanism underlying the oxidative stress tolerance remained unclear. We report here one of the downstream pathways of NO involved in stress-tolerance mechanism in yeast. Our microarray and real-time quantitative PCR analyses revealed that exogenous NO treatment induced the expression of genes responsible for copper metabolism under the control of the transcription factor Mac1, including the CTR1 gene encoding high-affinity copper transporter. Our ChIP analysis also demonstrated that exogenous NO enhances the binding of Mac1 to the promoter region of target genes. Interestingly, we found that NO produced under high-temperature stress conditions increased the transcription level of the CTR1 gene. Furthermore, NO produced during exposure to high temperature also increased intracellular copper content, the activity of Cu,Zn-superoxide dismutase Sod1, and cell viability after exposure to high-temperature in a manner dependent on Mac1. NO did not affect the expression of the MAC1 gene, indicating that NO activates Mac1 through its post-translational modification. Based on the results shown here, we propose a novel NO-mediated antioxidative mechanism that Mac1 activated by NO induces the CTR1 gene, leading to an increase in cellular copper level, and then Cu(I) activates Sod1. This is the first report to unveil the mechanism of NO-dependent antioxidative system in yeast.
Collapse
Affiliation(s)
- Ryo Nasuno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Miho Aitoku
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yuki Manago
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Akira Nishimura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yu Sasano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
- * E-mail:
| |
Collapse
|
16
|
Lim CJ, Jo H, Kim K. Protective roles of osmotic stress-resistant Hos3 against oxidative, nitrosative and nutritional stresses in Schizosaccharomyces pombe. World J Microbiol Biotechnol 2014; 31:237-45. [PMID: 25342311 DOI: 10.1007/s11274-014-1762-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 10/19/2014] [Indexed: 11/27/2022]
Abstract
Hos3 is involved in cellular growth under osmotic stress in Schizosaccharomyces pombe. The recombinant plasmid pYFHos3 harboring the structural gene encoding Hos3 was constructed. The S. pombe cells harboring pYFHos3 contained the increased hos3 (+) mRNA content and exhibited an enhanced growth in high osmotic conditions, such as 1.5 M KCl and 2.5 M D-glucose, compared with the vector control cells. In the presence of hydrogen peroxide (H2O2), superoxide anion-generating menadione (MD) and nitric oxide (NO)-generating sodium nitroprusside (SNP), they could grow better than the vector control cells. In the presence of H2O2, MD and SNP and in the absence of a nitrogen source, the S. pombe cells harboring pYFHos3 contained less elevated NO and reactive oxygen species (ROS) levels than the vector control cells. Collectively, the S. pombe Hos3 also participate in the cellular defense against oxidative, nitrosative and nutritional stresses through down-regulating ROS and NO levels.
Collapse
Affiliation(s)
- Chang-Jin Lim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon, 200-701, Korea,
| | | | | |
Collapse
|
17
|
Panja C, Ghosh S. Detection of in vivo protein tyrosine nitration in petite mutant of Saccharomyces cerevisiae: consequence of its formation and significance. Biochem Biophys Res Commun 2014; 451:529-34. [PMID: 25111815 DOI: 10.1016/j.bbrc.2014.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
Abstract
Protein tyrosine nitration (PTN) is a selective post-translational modification often associated with physiological and pathophysiological conditions. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group. In our previous study we first time showed that PTN occurs in vivo in Saccharomyces cerevisiae. In the present study we observed occurrence of PTN in petite mutant of S. cerevisiae which indicated that PTN is not absolutely dependent on functional mitochondria. Nitration of proteins in S. cerevisiae was also first time confirmed in immunohistochemical study using spheroplasts. Using proteosomal mutants Rpn10Δ, Pre9Δ, we first time showed that the fate of protein nitration in S. cerevisiae was not dependent on proteosomal clearing and probably played vital role in modulating signaling cascades. From our study it is evident that protein tyrosine nitration is a normal physiological event of S. cerevisiae.
Collapse
Affiliation(s)
- Chiranjit Panja
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| |
Collapse
|
18
|
Kim Y, Jo H, Lim CJ. Deubiquitinating activity of Sdu1, a putative member of the PPPDE peptidase family, in Schizosaccharomyces pombe. Can J Microbiol 2013; 59:789-96. [DOI: 10.1139/cjm-2013-0453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Schizosaccharomyces pombe sdu+ gene encoding a putative member of the PPPDE (Permuted Papain fold Peptidases of DsRNA viruses and Eukaryotes) superfamily was cloned into an Escherichia coli – yeast shuttle vector pRS316, resulting in the recombinant plasmid pYSTP. The determined nucleotide sequence carries 1207 bp, which would encode a protein of 201 amino acid residues. The S. pombe cells harboring pYSTP contained higher sdu1+ mRNA and deubiquitinating activity levels than the vector control cells, indicating that the sdu1+ gene is functioning. They exhibited a better growth in normal rich medium than the vector control cells. When shifted into the fresh medium containing hydrogen peroxide, menadione, or sodium nitroprusside, the S. pombe cells harboring pYSTP were able to grow reasonably well, while the growth of the vector control cells was arrested. The reactive oxygen species and total glutathione levels of the S. pombe cells harboring pYSTP were lower and higher than those of the vector control cells under the same stressful conditions, respectively. They exhibited a lower nitric oxide level than the vector control cells when subjected to sodium nitroprusside. Taken together, the sdu1+ gene encodes an actual protein having deubiquitinating activity and is involved in the response against oxidative and nitrosative stresses in S. pombe.
Collapse
Affiliation(s)
- Yunsik Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701, Korea
| | - Hannah Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701, Korea
| | - Chang-Jin Lim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701, Korea
| |
Collapse
|
19
|
Kato T, Zhou X, Ma Y. Possible involvement of nitric oxide and reactive oxygen species in glucose deprivation-induced activation of transcription factor rst2. PLoS One 2013; 8:e78012. [PMID: 24155978 PMCID: PMC3796501 DOI: 10.1371/journal.pone.0078012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/07/2013] [Indexed: 11/18/2022] Open
Abstract
Glucose is one of the most important sources of cellular nutrition and glucose deprivation induces various cellular responses. In Schizosaccharomyces pombe, zinc finger protein Rst2 is activated upon glucose deprivation, and regulates gene expression via the STREP (stress response element of Schizosaccharomyces pombe) motif. However, the activation mechanism of Rst2 is not fully understood. We monitored Rst2 transcriptional activity in living cells using a Renilla luciferase reporter system. Hydrogen peroxide (H2O2) enhanced Rst2 transcriptional activity upon glucose deprivation and free radical scavenger inhibited Rst2 transcriptional activity upon glucose deprivation. In addition, deletion of the trx2 (+) gene encoding mitochondrial thioredoxin enhanced Rst2 transcriptional activity. Notably, nitric oxide (NO) generators enhanced Rst2 transcriptional activity upon glucose deprivation as well as under glucose-rich conditions. Furthermore, NO specific scavenger inhibited Rst2 transcriptional activity upon glucose deprivation. Altogether, our data suggest that NO and reactive oxygen species may be involved in the activation of transcription factor Rst2.
Collapse
Affiliation(s)
- Toshiaki Kato
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Xin Zhou
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- The First Affiliated Hospital of Liaoning Medical University, Jinzhou City, Liaoning Province, China
| | - Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
20
|
Park MS, Kim HJ, Park AR, Ahn K, Lim HW, Lim CJ. Pap1p-dependent upregulation of thioredoxin 3 and thioredoxin reductase genes from the fission yeast under nitrosative stress. Can J Microbiol 2012; 58:206-11. [DOI: 10.1139/w11-125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Min-Sik Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Hyeon-Jung Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - A Rum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Kisup Ahn
- Department of Health and Environment, Baekseok Culture University, Cheonan 330-705, Korea
| | - Hye-Won Lim
- Shebah Biotech Inc., Chuncheon Biotechnology Foundation, Hi-Tech Venture Town, Chuncheon 200-161, Korea
| | - Chang-Jin Lim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
21
|
Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal Genet Biol 2012; 49:15-20. [DOI: 10.1016/j.fgb.2011.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 10/01/2011] [Accepted: 12/12/2011] [Indexed: 11/30/2022]
|
22
|
Carmona L, Gandía M, López-García B, Marcos JF. Sensitivity of Saccharomyces cerevisiae to the cell-penetrating antifungal peptide PAF26 correlates with endogenous nitric oxide (NO) production. Biochem Biophys Res Commun 2012; 417:56-61. [DOI: 10.1016/j.bbrc.2011.11.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 01/30/2023]
|
23
|
Lewinska A, Macierzynska E, Grzelak A, Bartosz G. A genetic analysis of nitric oxide-mediated signaling during chronological aging in the yeast. Biogerontology 2011; 12:309-20. [PMID: 21424154 PMCID: PMC3139093 DOI: 10.1007/s10522-011-9329-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/04/2011] [Indexed: 11/21/2022]
Abstract
In mammals, NO•, a signaling molecule is implicated in the regulation of vasodilation, neurotransmission and immune response. It is believed that NO• is a signaling molecule also in unicellular organism like yeast and may be involved in the regulation of apoptosis and sporulation. It has been reported that NO• is produced during chronological aging (CA) leading to an increase of the superoxide level, which in turn mediates apoptosis. Since this conclusion was based on indirect measurements of NO• by the Griess reaction, the role of NO• signaling during CA in the yeast remains uncertain. We investigated this issue more precisely using different genetic and biochemical methodologies. We used cells lacking the factors influencing nitrosative stress response like flavohemoglobin metabolizing NO•, S-nitrosoglutathione reductase metabolizing S-nitrosoglutathione and the transcription factor Fzf1p mediating NO• response. We measured the standard parameters describing CA and found an elevation in the superoxide level, percentage of death cells, the level of TUNEL positive cells and a decrease in proliferating potential. These observations showed no significant differences between wild type cells and the disruptants except for a small elevation of the superoxide level in the Δsfa1 mutant. The intracellular NO• level and flavohemoglobin expression decreased rather than increased during CA. Products of general nitrogen metabolism and protein tyrosine nitration were slightly decreased during CA, the magnitude of changes showing no differences between the wild type and the mutant yeast. Altogether, our data indicate that apoptosis during yeast CA is mediated by superoxide signaling rather than NO• signaling.
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | | | | | | |
Collapse
|
24
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|