1
|
Qiu L, Hu S, Wang Y, Qu H. Accumulation of Abnormal Amyloplasts in Pulp Cells Induces Bitter Pit in Malus domestica. FRONTIERS IN PLANT SCIENCE 2021; 12:738726. [PMID: 34630490 PMCID: PMC8496688 DOI: 10.3389/fpls.2021.738726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Apple bitter pit primarily occurs during fruit ripening and storage; however, its formation mechanism remains unclear. Although it is considered that Ca2+ deficiency causes metabolic disorders in apples, there have been few studies on the mechanism of the bitter pit from the perspective of cell structure. At the fruit ripening stage, the fruit with a bitter pit on the tree was taken as the research material. In this study, the microscopic observation revealed numerous amyloplasts in the pulp cells of apples affected with bitter pit, but not in the healthy pulp. Furthermore, the results of fluorescence staining and transmission electron microscopy (TEM) revealed that the bitter pit pulp cells undergo programmed cell death (PCD), their nuclear chromosomes condense, and amyloplast forms autophagy. The cytoplasmic Ca2+ concentration in the healthy fruits was lowest near the peduncle, followed by that in the calyx, whereas it was highest at the equator. In contrast, the cytoplasmic Ca2+ concentration in apple fruits showing bitter pit disorder was lowest near the peduncle and highest in the calyx. Moreover, the cytosolic Ca2+ concentration in the flesh cells of apples with the bitter pit was much lower than that in the healthy apple flesh cells; however, the concentration of Ca2+ in the vacuoles of fruits with the bitter pit was higher than that in the vacuoles of healthy fruits. In summary, bitter pit pulp cells contain a large number of amyloplasts, which disrupts the distribution of Ca2+ in the pulp cells and causes PCD. These two processes lead to an imbalance in cell metabolism and induce the formation of a bitter pit.
Collapse
Affiliation(s)
| | | | - Yongzhang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Haiyong Qu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
Cao J, Zhang M, Zhu M, He L, Xiao J, Li X, Yuan M. Autophagy-Like Cell Death Regulates Hydrogen Peroxide and Calcium Ion Distribution in Xa3/Xa26-Mediated Resistance to Xanthomonas oryzae pv. oryzae. Int J Mol Sci 2019; 21:ijms21010194. [PMID: 31892124 PMCID: PMC6981989 DOI: 10.3390/ijms21010194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 01/07/2023] Open
Abstract
The broad-spectrum and durable resistance gene Xa3/Xa26 against Xanthomonas oryzae pv. oryzae (Xoo) has been widely exploited in rice production in China. But the cytological features of the Xa3/Xa26-mediated resistance reaction have been rarely reported. This study reveals the cytological characteristics of the Xa3/Xa26-mediated resistance reaction against Xoo to uncover the functions of hypersensitive response programmed cell death (HR-PCD) in rice. Autophagy-like cell death, which was characterized by double-membrane bodies appearance in xylem parenchyma cell and mesophyll cell, was inhibited by autophagy inhibitor 3-methyladenin (3-MA). The autophagy-related genes were induced to reach a high level in resistance reaction. The hydrogen peroxide (H2O2) maintained a low concentration on the plasma membrane. The calcium ions localized on the apoplast were transferred into the vacuole. The autophagy inhibitor (3-MA) impaired Xa3/Xa26-mediated resistance by promoting the accumulation of H2O2, and inhibited the transfer of extracellular calcium ions into the vacuole in the xylem parenchyma cells and mesophyll cells. Therefore, the HR-PCD belongs to autophagy-like cell death in the Xa3/Xa26-mediated resistance reaction. These results suggest that the autophagy-like cell death participates in the Xa3/Xa26-mediated resistance by negatively regulating H2O2 accumulation, in order to abolish oxidative stress and possibly activate calcium ion signals in xylem parenchyma cells of the rice leaf.
Collapse
Affiliation(s)
- Jianbo Cao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence: (J.C.); (M.Y.); Tel.: +86-27-8728-2466 (J.C. & M.Y.)
| | - Meng Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
| | - Mengmeng Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
| | - Limin He
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (M.Z.); (J.X.); (X.L.)
- Correspondence: (J.C.); (M.Y.); Tel.: +86-27-8728-2466 (J.C. & M.Y.)
| |
Collapse
|
3
|
Zhao Y, Cheng P, Li T, Ma J, Zhang Y, Wang H. Investigation of urediospore morphology, histopathology and epidemiological components on wheat plants infected with UV-B-induced mutant strains of Puccinia striiformis f. sp. tritici. Microbiologyopen 2019; 8:e870. [PMID: 31102347 PMCID: PMC6813489 DOI: 10.1002/mbo3.870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/06/2022] Open
Abstract
Planting resistant cultivars is the most economical and effective measure to control wheat stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), but the cultivars often lose their resistance due to the emergence of new physiological races. The UV-B-irradiated urediospores of the Pst physiological race CYR32 in China were inoculated on wheat cultivar Guinong 22 for screening virulence-mutant strains. CYR32 and mutant strains (CYR32-5 and CYR32-61) before and after UV-B radiation were used to conduct urediospore morphological and histopathological observations and an investigation of epidemiological components. The results showed that UV-B radiation affected the urediospore morphology of each strain. UV-B radiation inhibited urediospore invasion and hyphal elongation, which mainly manifested as decreases in germination rate, quantities of hyphal branches, haustorial mother cells and haustoria and hyphal length. After wheat cultivar Mingxian 169 was inoculated with the UV-B-irradiated urediospores, the incubation period was prolonged, and the infection efficiency, lesion expansion rate, total sporulation quantity and area under the disease progress curve were reduced. The results demonstrated that CYR32-5 and CYR32-61 may have more tolerance to UV-B radiation than CYR32. The results are significant for understanding mechanisms of Pst virulence variations and implementing sustainable management of wheat stripe rust.
Collapse
Affiliation(s)
- Yaqiong Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pei Cheng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tingting Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinxing Ma
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuzhu Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Haiguang Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Liu P, Guo J, Zhang R, Zhao J, Liu C, Qi T, Duan Y, Kang Z, Guo J. TaCIPK10 interacts with and phosphorylates TaNH2 to activate wheat defense responses to stripe rust. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:956-968. [PMID: 30451367 PMCID: PMC6587807 DOI: 10.1111/pbi.13031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 05/18/2023]
Abstract
Calcineurin B-like interacting protein kinase (CIPKs) has been shown to be required for biotic stress tolerance of plants in plant-pathogen interactions. However, the roles of CIPKs in immune signalling of cereal crops and an in-depth knowledge of substrates of CIPKs in response to biotic stress are under debate. In this study, we identified and cloned a CIPK homologue gene TaCIPK10 from wheat. TaCIPK10 was rapidly induced by Puccinia striiformis f. sp. tritici (Pst) inoculation and salicylic acid (SA) treatment. In vitro phosphorylation assay demonstrated that the kinase activity of TaCIPK10 is regulated by Ca2+ and TaCBL4. Knockdown TaCIPK10 significantly reduced wheat resistance to Pst, whereas TaCIPK10 overexpression resulted in enhanced wheat resistance to Pst by the induction of defense response in different aspects, including hypersensitive cell death, ROS accumulation and pathogenesis-relative genes expression. Moreover, TaCIPK10 physically interacted with and phosphorylated TaNH2, which was homologous to AtNPR3/4. Silencing of TaNH2 in wheat resulted in enhanced susceptibility to the avirulent Pst race, CYR23, indicating its positive role in wheat resistance. Our results demonstrate that TaCIPK10 positively regulate wheat resistance to Pst as molecular links between of Ca2+ and downstream components of defense response and TaCIPK10 interacts with and phosphorylates TaNH2 to regulate wheat resistance to Pst.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruiming Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jiaxin Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
5
|
Liu P, Duan Y, Liu C, Xue Q, Guo J, Qi T, Kang Z, Guo J. The calcium sensor TaCBL4 and its interacting protein TaCIPK5 are required for wheat resistance to stripe rust fungus. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4443-4457. [PMID: 29931351 DOI: 10.1093/jxb/ery227] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Calcineurin B-like proteins (CBLs) act as Ca2+ sensors to activate specific protein kinases, namely CBL-interacting protein kinases (CIPKs). Recent research has demonstrated that the CBL-CIPK complex is not only required for abiotic stress signaling, but is also probably involved in biotic stress perception. However, the role of this complex in immune signaling, including pathogen perception, is unknown. In this study, we isolated one signaling component of the TaCBL-TaCIPK complex (TaCBL4-TaCIPK5) and characterized its role in the interaction between wheat (Triticum aestivum) and Puccinia striiformis f. sp. tritici (Pst, stripe rust fungus). Among all TaCBLs in wheat, TaCBL4 mRNA accumulation markedly increased after infection by Pst. Silencing of TaCBL4 resulted in enhanced susceptibility to avirulent Pst infection. In addition, screening determined that TaCIPK5 physically interacted with TaCBL4 in planta and positively contributed to wheat resistance to Pst. Moreover, the disease resistance phenotype of TaCBL4 and TaCIPK5 co-silenced plants was consistent with that of single-knockdown plants. The accumulation of reactive oxygen species (ROS) was significantly altered in all silenced plants during Pst infection. Together these findings demonstrate that the TaCBL4-TaCIPK5 complex positively modulates wheat resistance in a ROS-dependent manner, and provide new insights into the roles of CBL-CIPK in wheat.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qinghe Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|