1
|
Smolarz B, Durczyński A, Romanowicz H, Hogendorf P. The Role of microRNA in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9101322. [PMID: 34680441 PMCID: PMC8533140 DOI: 10.3390/biomedicines9101322] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small ribonucleic acid molecules that play a key role in regulating gene expression. The increasing number of studies undertaken on the functioning of microRNAs in the tumor formation clearly indicates their important potential in oncological therapy. Pancreatic cancer is one of the deadliest cancers. The expression of miRNAs released into the bloodstream appears to be a good indicator of progression and evaluation of the aggressiveness of pancreatic cancer, as indicated by studies. The work reviewed the latest literature on the importance of miRNAs for pancreatic cancer development.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-271-1290
| | - Adam Durczyński
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Piotr Hogendorf
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| |
Collapse
|
2
|
Sharma AR, Sharma G, Bhattacharya M, Lee SS, Chakraborty C. Circulating miRNA in atherosclerosis: a clinical biomarker and early diagnostic tool. Curr Mol Med 2021; 22:250-262. [PMID: 33719955 DOI: 10.2174/1566524021666210315124438] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/22/2022]
Abstract
Atherosclerosis, which is a vascular disease, is characterized by narrowing the arteries and forming plaque inside arteries. There is a record 17.5 million associated deaths recorded annually, representing 31% of global death. It has been noted that there is an association between vascular fibrosis and atherosclerosis. The thickening of the arterial wall and reduction of the lumen diameter may cause unwarranted deposition of extracellular matrix (ECM), and these conditions help in the progression of many clinical diseases and pathological conditions such as atherosclerosis. Here, we reviewed the involvement of various circulating microRNAs (miRNAs) in the very early diagnosis of atherosclerosis. We have also tried to provide an insight into the advantages and validation of circulating miRNAs through different techniques. We have discussed different circulating miRNAs, such as miR-17, miR-17-5p, miR-29b, miR-30, miR-92a, miR-126, miR-143, miR-145, miR-146a, miR-212, miR-218, miR-221, miR-222, miR-361-5p, as a biomarker for clinical diagnosis of atherosclerosis. The insightful demonstration in this review will offer a better opportunity for the researchers and technology developers in understanding the current scenario of circulating miRNA, which could facilitate them in improving the current diagnostic technologies of atherosclerosis in clinics.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do, 24252. Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341. Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore- 756020 Odisha. India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do, 24252. Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126. India
| |
Collapse
|
3
|
Lin Z, Lu S, Xie X, Yi X, Huang H. Noncoding RNAs in drug-resistant pancreatic cancer: A review. Biomed Pharmacother 2020; 131:110768. [PMID: 33152930 DOI: 10.1016/j.biopha.2020.110768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is the fourth-leading cause of cancer-related deaths and is expected to be the second-leading cause of cancer-related deaths in Europe and the United States by 2030. The high fatality rate of pancreatic cancer is ascribed to untimely diagnosis, early metastasis and limited responses to both chemotherapy and radiotherapy. Although gemcitabine, 5-fluorouracil and some other drugs can profoundly improve patient prognosis, most pancreatic cancer patients eventually develop drug resistance, leading to poor clinical outcomes. The underlying mechanisms of pancreatic cancer drug resistance are complicated and inconclusive. Interestingly, accumulating evidence has demonstrated that different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play a crucial role in pancreatic cancer resistance to chemotherapy reagents. In this paper, we systematically summarize the molecular mechanism underlying the influence of ncRNAs on the generation and development of drug resistance in pancreatic cancer and discuss the potential role of ncRNAs as prognostic markers and new therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Zhengjun Lin
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Shiyao Lu
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xubin Xie
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xuyang Yi
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Pre-Clinical Medicine/ Second Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
4
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. The Interplay among miRNAs, Major Cytokines, and Cancer-Related Inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:606-620. [PMID: 32348938 PMCID: PMC7191126 DOI: 10.1016/j.omtn.2020.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is closely related with the progression of cancer and is an indispensable component that orchestrates the tumor microenvironment. Studies suggest that different mediator and cellular effectors, including cytokines (interleukins, tumor necrosis factor-α [TNF-α], transforming growth factor-β [TGF-β], and granulocyte macrophage colony-stimulating factor [GM-CSF]), chemokines, as well as some transcription factors (nuclear factor κB [NF-κB], signal transducer and activator of transcription 3 [STAT3], hypoxia-inducible factor-1α [HIF1α]), play a crucial role during cancer-related inflammation (CRI). MicroRNAs (miRNAs) are the key components of cellular physiology. They play notable roles during posttranscriptional gene regulation and, thus, might have a potential role in controlling the inflammatory cascade during cancer progression. Taking into consideration the role identified for miRNAs in relation to inflammatory cytokines, we have tried to review their participation in neoplastic progression. Additionally, the involvement of miRNAs with some important transcription factors (NF-κB, STAT3, HIF1α) and proteins (cyclooxygenase-2 [COX-2], inducible nitric oxide synthase [iNOS]) closely associated with inflammation during cancer has also been discussed. A clear insight into the responsibility of miRNAs in cytokine signaling and inflammation related to CRI could project them as new therapeutic molecules, which could lead to improved treatment of CRI in the near future.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India; Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| |
Collapse
|
5
|
Yang K, Wang S, Cheng Y, Tian Y, Hou J. Role of miRNA-21 in the diagnosis and prediction of treatment efficacy of primary central nervous system lymphoma. Oncol Lett 2019; 17:3475-3481. [PMID: 30867786 DOI: 10.3892/ol.2019.9941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) has a poor prognosis and requires early diagnosis and treatment. The aim of the present study was to investigate the difference between microRNA-21 (miRNA-21) expression in the plasma and cerebrospinal fluid (CSF) of patients with PCNSL, and to discuss the importance of miRNA-21 in its diagnostic and therapeutic evaluation. The research subjects were confirmed as patients with PCNSL with histopathological lesions at The First Affiliated Hospital of Harbin Medical University (Harbin, China) between December 2011 and 2017. Comparisons were drawn between the PCNSL, glioblastoma and the healthy control groups. CSF and plasma specimens were obtained from patients with PCNSL prior to chemotherapy, and CSF specimens were also obtained following chemotherapy. Plasma specimens were taken from patients with glioblastoma and the healthy control group. Using reverse transcription-quantitative polymerase chain reaction analysis, it was revealed that plasma miRNA-21 expression level had a notable diagnostic value in distinguishing PCNSL from glioblastoma, another common neurological tumor. Moreover, miRNA-21 expression levels in the plasma correlated positively with those in the CSF. Therefore, miRNA-21 in the plasma may be used as a novel diagnostic biomarker to distinguish patients with PCNSL from those with glioblastoma, whereas miRNA-21 in the CSF may have potential as a predictor of chemotherapeutic effect in PCNSL.
Collapse
Affiliation(s)
- Kunpeng Yang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuye Wang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yafeng Cheng
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yaoyao Tian
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jinxiao Hou
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
6
|
Chakraborty C, Sharma AR, Sharma G, Sarkar BK, Lee SS. The novel strategies for next-generation cancer treatment: miRNA combined with chemotherapeutic agents for the treatment of cancer. Oncotarget 2018; 9:10164-10174. [PMID: 29515800 PMCID: PMC5839381 DOI: 10.18632/oncotarget.24309] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022] Open
Abstract
Medical practitioners are recommending combination therapy in cancer for its various advantages. Combination therapy increases the efficacy of treatment due to its synergistic effects in cancer treatment. In this post-genomic era, microRNAs (miRNAs) are receiving attention for their role in human disease and disease therapy. In this review, we discuss the combination of miRNAs and chemotherapeutic agents for cancer treatment. Moreover, we attempted to portray the role of miRNAs in cancer therapy; outline combination therapy, especially chemo-combination therapy, and discuss the basis for miRNA-based chemo-combination therapies and chemo-combination therapy with miRNA for cancer treatment.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
- Department of Bioinformatics, School of Computer Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| | - Bimal Kumar Sarkar
- Department of Physics, School of Basic and Applied Science, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| |
Collapse
|
7
|
Sharma AR, Sharma G, Lee SS, Chakraborty C. miRNA-Regulated Key Components of Cytokine Signaling Pathways and Inflammation in Rheumatoid Arthritis. Med Res Rev 2016; 36:425-39. [PMID: 26786912 DOI: 10.1002/med.21384] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 12/10/2015] [Accepted: 12/19/2015] [Indexed: 12/27/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that primarily affects joints. This autoimmune disease pathogenesis is related to cytokine signaling. In this review, we have described the existence of various microRNAs (miRNAs) involved in regulation of major protein cascades of cytokine signaling associated with RA. Moreover, we have tried to portray the role of various miRNAs in different cytokines such as TNF-α, IL-1, IL-6, IL-10, IL-17, IL-18, IL-21, and granulocyte macrophage colony-stimulating factor (GMCSF). Along with this, we have also discussed the miRNA regulation in T cells and synovial tissue. From the analyzed data, we suggest that miR-146a and miR-155 might be the potential therapeutic target for treating RA. The insight illustrated in this review will offer a better understanding of the role of miRNA in cytokine signaling pathways and inflammation during RA and could project them as diagnostic or therapeutic agents in near future.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea.,Department of Bioinformatics, School of Computer Sciences, Galgotias University, Greater Noida, 203201, Uttar Pradesh, India
| |
Collapse
|