1
|
Unique Features of River Lamprey (Lampetra fluviatilis) Myogenesis. Int J Mol Sci 2022; 23:ijms23158595. [PMID: 35955736 PMCID: PMC9368804 DOI: 10.3390/ijms23158595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
The river lamprey (L. fluviatilis) is a representative of the ancestral jawless vertebrate group. We performed a histological analysis of trunk muscle fiber differentiation during embryonal, larval, and adult musculature development in this previously unstudied species. Investigation using light, transmission electron (TEM), and confocal microscopy revealed that embryonal and larval musculature differs from adult muscle mass. Here, we present the morphological analysis of L. fluviatilis myogenesis, from unsegmented mesoderm through somite formation, and their differentiation into multinucleated muscle lamellae. Our analysis also revealed the presence of myogenic factors LfPax3/7 and Myf5 in the dermomyotome. In the next stages of development, two types of muscle lamellae can be distinguished: central surrounded by parietal. This pattern is maintained until adulthood, when parietal muscle fibers surround the central muscles on both sides. The two types show different morphological characteristics. Although lampreys are phylogenetically distant from jawed vertebrates, somite morphology, especially dermomyotome function, shows similarity. Here we demonstrate that somitogenesis is a conservative process among all vertebrates. We conclude that river lamprey myogenesis shares features with both ancestral and higher vertebrates.
Collapse
|
2
|
Hermyt M, Metscher B, Rupik W. Ultrastructural studies of developing egg tooth in grass snake Natrix natrix (Squamata, Serpentes) embryos, supported by X-ray microtomography analysis. ZOOLOGY 2021; 146:125913. [PMID: 33765551 DOI: 10.1016/j.zool.2021.125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
The egg tooth development is similar to the development of all the other vertebrate teeth except earliest developmental stages because the egg tooth develops directly from the oral epithelium instead of the dental lamina similarly to null generation teeth. The developing egg tooth of Natrix natrix changes its curvature differently than the egg tooth of the other investigated unidentates due to the presence of the rostral groove. The developing grass snake egg tooth comprises dental pulp and the enamel organ. The fully differentiated enamel organ consists of outer enamel epithelium, stellate reticulum, and ameloblasts in its inner layer. The enamel organ directly in contact with the oral cavity is covered with periderm instead of outer enamel epithelium. Stellate reticulum cells in the grass snake egg tooth share intercellular spaces with the basal part of ameloblasts and are responsible for their nutrition. Ameloblasts during egg tooth differentiation pass through the following stages: presecretory, secretory, and mature. The ameloblasts from the grass snake egg tooth show the same cellular changes as reported during mammalian amelogenesis but are devoid of Tomes' processes. Odontoblasts of the developing grass snake egg tooth pass through the following classes: pre-odontoblasts, secretory odontoblasts, and ageing odontoblasts. They have highly differentiated secretory apparatus and in the course of their activity accumulate lipofuscin. Grass snake odontoblasts possess processes which are poor in organelles. In developing egg tooth cilia have been identified in odontoblasts, ameloblasts and cells of the stellate reticulum. Dental pulp cells remodel collagen matrix during growth of the grass snake egg tooth. They degenerate in a way previously not described in other teeth.
Collapse
Affiliation(s)
- Mateusz Hermyt
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, 9 Bankowa Str., 40-007, Katowice, Poland
| | - Brian Metscher
- Department of Evolutionary Biology, University of Vienna, Althanstraße 14, 1090, Austria
| | - Weronika Rupik
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, 9 Bankowa Str., 40-007, Katowice, Poland.
| |
Collapse
|
3
|
Kaczmarek P, Rupik W. Structural and ultrastructural studies on the developing vomeronasal sensory epithelium in the grass snake Natrix natrix (Squamata: Colubroidea). J Morphol 2020; 282:378-407. [PMID: 33340145 DOI: 10.1002/jmor.21311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
The sensory olfactory epithelium and the vomeronasal sensory epithelium (VSE) are characterized by continuous turnover of the receptor cells during postnatal life and are capable of regeneration after injury. The VSE, like the entire vomeronasal organ, is generally well developed in squamates and is crucial for detection of pheromones and prey odors. Despite the numerous studies on embryonic development of the VSE in squamates, especially in snakes, an ultrastructural analysis, as far as we know, has never been performed. Therefore, we investigated the embryology of the VSE of the grass snake (Natrix natrix) using electron microscopy (SEM and TEM) and light microscopy. As was shown for adult snakes, the hypertrophied ophidian VSE may provide great resolution of changes in neuron morphology located at various epithelial levels. The results of this study suggest that different populations of stem/progenitor cells occur at the base of the ophidian VSE during embryonic development. One of them may be radial glia-like cells, described previously in mouse. The various structure and ultrastructure of neurons located at different parts of the VSE provide evidence for neuronal maturation and aging. Based on these results, a few nonmutually exclusive hypotheses explaining the formation of the peculiar columnar organization of the VSE in snakes were proposed.
Collapse
Affiliation(s)
- Paweł Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Weronika Rupik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
4
|
Khan SA, He J, Deng S, Zhang H, Liu G, Li S, Tang D, Zhang J, Shu Y, Wu H. Integrated analysis of mRNA and miRNA expression profiles reveals muscle growth differences between fast- and slow-growing king ratsnakes (Elaphe carinata). Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110482. [DOI: 10.1016/j.cbpb.2020.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
|
5
|
Lewandowski D, Dubińska-Magiera M, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Haczkiewicz-Leśniak K, Dzięgiel P, Daczewska M. Everybody wants to move-Evolutionary implications of trunk muscle differentiation in vertebrate species. Semin Cell Dev Biol 2019; 104:3-13. [PMID: 31759871 DOI: 10.1016/j.semcdb.2019.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
In our review we have completed current knowledge on myotomal myogenesis in model and non-model vertebrate species (fishes, amphibians, reptiles, birds and mammals) at morphological and molecular levels. Data obtained from these studies reveal distinct similarities and differences between amniote and anamniote species. Based on the available data, we decided to present evolutionary implications in vertebrate trunk muscle development. Despite the fact that in all vertebrates muscle fibres are multinucleated, the pathways leading to them vary between vertebrate taxa. In fishes during early myogenesis myoblasts differentiate into multinucleated lamellae or multinucleate myotubes. In amphibians, myoblasts fuse to form multinucleated myotubes or, bypassing fusion, directly differentiate into mononucleated myotubes. Furthermore, mononucleated myotubes were also observed during primary myogenesis in amniotes. The mononucleated state of myogenic cells could be considered as an old phylogenetic, plesiomorphic feature, whereas direct multinuclearity of myotubes has a synapomorphic character. On the other hand, the explanation of this phenomenon could also be linked to the environmental conditions in which animals develop. The similarities observed in vertebrate myogenesis might result from a conservative myogenic programme governed by the Pax3/Pax7 and myogenic regulatory factor (MRF) network, whereas differences in anamniotes and amniotes are established by spatiotemporal pattern expression of MRFs during muscle differentiation and/or environmental conditions.
Collapse
Affiliation(s)
- Damian Lewandowski
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland; Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | | | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368 Wrocław, Poland; Department of Physiotherapy, University School of Physical Education, Paderewskiego 35, 51-612 Wrocław, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| |
Collapse
|
6
|
Nick P. Causa formalis-detail matters. PROTOPLASMA 2017; 254:1469-1470. [PMID: 28512682 DOI: 10.1007/s00709-017-1122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Peter Nick
- Karlsruher Institut fur Technologie, Karlsruhe, Germany.
| |
Collapse
|
7
|
Lewandowski D, Dubińska-Magiera M, Posyniak E, Rupik W, Daczewska M. Does the grass snake (Natrix natrix) (Squamata: Serpentes: Natricinae) fit the amniotes-specific model of myogenesis? PROTOPLASMA 2017; 254:1507-1516. [PMID: 27834030 PMCID: PMC5487930 DOI: 10.1007/s00709-016-1040-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
In the grass snake (Natrix natrix), the newly developed somites form vesicles that are located on both sides of the neural tube. The walls of the vesicles are composed of tightly connected epithelial cells surrounding the cavity (the somitocoel). Also, in the newly formed somites, the Pax3 protein can be observed in the somite wall cells. Subsequently, the somite splits into three compartments: the sclerotome, dermomyotome (with the dorsomedial [DM] and the ventrolateral [VL] lips) and the myotome. At this stage, the Pax3 protein is detected in both the DM and VL lips of the dermomyotome and in the mononucleated cells of the myotome, whereas the Pax7 protein is observed in the medial part of the dermomyotome and in some of the mononucleated cells of the myotome. The mononucleated cells then become elongated and form myotubes. As myogenesis proceeds, the myotome is filled with multinucleated myotubes accompanied by mononucleated, Pax7-positive cells (satellite cells) that are involved in muscle growth. The Pax3-positive progenitor muscle cells are no longer observed. Moreover, we have observed unique features in the differentiation of the muscles in these snakes. Specifically, our studies have revealed the presence of two classes of muscles in the myotomes. The first class is characterised by fast muscle fibres, with myofibrils equally distributed throughout the sarcoplasm. In the second class, composed of slow muscle fibres, the sarcoplasm is filled with lipid droplets. We assume that their storage could play a crucial role during hibernation in the adult snakes. We suggest that the model of myotomal myogenesis in reptiles, birds and mammals shows the same morphological and molecular character. We therefore believe that the grass snake, in spite of the unique features of its myogenesis, fits into the amniotes-specific model of trunk muscle development.
Collapse
Affiliation(s)
- Damian Lewandowski
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Ewelina Posyniak
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Weronika Rupik
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335, Wroclaw, Poland.
| |
Collapse
|